• Title/Summary/Keyword: Irrigated agricultural watersheds

Search Result 8, Processing Time 0.029 seconds

Runoff Hydrograph Synthesis from Small Watersheds Considering Hydrological Characteristics of Irrigated Rice Paddies (논의 수문특성을 고려한 소유역의 유출곡선 합성)

  • 김철겸;박승우;임상준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.56-62
    • /
    • 2000
  • The NRCS curve number (CN) method has been widely adopted in practice to synthesize runoff hydrographs from small watersheds with complex land use. It may not be valid to apply this model for irrigated paddies, since hydrological characteristics of irrigated rice paddies are not sufficiently considered in CN method. This paper attempts to extend the capability of the well-known SCS TR-20 model to local conditions by formulating a submodel for the runoff-processes in paddies. The modified model was tested with field data from the Baran watershed. The results were in good agreement with field data. It was also applicable to simulate runoff changes resulting from land use changes within the watershed.

  • PDF

Prediction of Daily Streamflow on Agricultural Watersheds (농업유역의 일별 하천유출량 추정)

  • Im, Sang-Jun;Park, Seung-U
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.274-282
    • /
    • 2006
  • The objective of this study was to develop a hydrologic simulation model to predict daily streamflow from a small agricultural watershed considering irrigation return flow. The proposed IREFLOW(Irrigation REturn FLOW) model consists of hillslope runoff model, irrigation scheme drainage model, and irrigation return flow model, and simulates daily streamflow from an irrigated watershed. Two small watersheds were selected for monitoring of hydrological components and evaluating the model application. The relative error (RE) between observed and simulated daily streamflow were 2.9% and 6.4%, respectively, on two small agricultural watersheds (Baran and Gicheon) for the calibration period. The values of RE in daliy streamflow for the validation period were 6.0% for the Baran watershed, and 2.8% for the Gicheon watershed.

  • PDF

Hydrological Drought Assessment of Agricultural Reservoirs based on SWSI in Geum River Basin (SWSI에 기반한 금강권역 농업용 저수지의 수문학적 가뭄평가)

  • Ahn, So-Ra;Park, Jong-Yoon;Jung, In-Kyun;Na, Sang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.35-49
    • /
    • 2009
  • This study proposes a method to evaluate agricultural reservoirs drought by modifying SWSI (Surface Water Supply Index). The method was applied to Geum river basin and the results were represented as spatially distributed information. The SWSI evaluates hydrological drought of watershed unit by selectively applying one or all of the components of snowpack, precipitation, streamflow and reservoir storage. South Korea has 22 % of agricultural area, and rice paddy covers 64 % among them. Usually paddy fields scattered along stream are irrigated by so many small agricultural reservoirs. It is difficult to evaluate agriculture drought by the little information and large number of agricultural reservoirs. In this study, seven agricultural reservoirs over 10 million ton storage capacity were selected in Geum river basin, and the SWSI was evaluated for both upstream and downstream of the reservoirs using 16 years data (1991-2006). Using the results, multiple regression analyses with precipitation and reservoir storage as variables were conducted and the equations were applied to other watersheds. The spatial results by applying regression equations showed that the severe and moderate drought conditions of July and September in 1994, June in 1995, and May in 2001 were well expressed by the watershed unit.

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams (관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보)

  • Lee Joo-Yong;Kim Sun-Joo;Kim Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.

Climate-instigated disparities in supply and demand constituents of agricultural reservoirs for paddy-growing regions

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.516-516
    • /
    • 2022
  • Agricultural reservoirs are critical water resources structures to ensure continuous water supplies for rice cultivation in Korea. Climate change has increased the risk of reservoir failure by exacerbating discrepancies in upstream runoff generation, downstream irrigation water demands, and evaporation losses. In this study, the variations in water balance components of 400 major reservoirs during 1973-2017 were examined to identify the reservoirs with reliable storage capacities and resilience. A conceptual lumped hydrological model was used to transform the incident rainfall into the inflows entering the reservoirs and the paddy water balance model was used to estimate the irrigation water demand. Historical climate data analysis showed a sharp warming gradient during the last 45 years that was particularly evident in the central and southern regions of the country, which were also the main agricultural areas with high reservoir density. We noted a country-wide progressive increase in average annual cumulative rainfall, but the forcing mechanism of the rainfall increment and its spatial-temporal trends were not fully understood. Climate warming resulted in a significant increase in irrigation water demand, while heavy rains increased runoff generation in the reservoir watersheds. Most reservoirs had reliable storage capacities to meet the demands of a 10-year return frequency drought but the resilience of reservoirs gradually declined over time. This suggests that the recovery time of reservoirs from the failure state had increased which also signifies that the duration of the dry season has been prolonged while the wet season has become shorter and/or more intense. The watershed-irrigated area ratio (W-Iratio) was critical and the results showed that a slight disruption in reservoir water balance under the influence of future climate change would seriously compromise the performance of reservoirs with W-Iratio< 5.

  • PDF

Influence of Land Use on the Pollution Load in the Saemangeum Basin (새만금 유역에서 토지 이용이 오염부하에 미치는 영향 평가)

  • Lee, Deog-Bae;Kim, Jong-Cheon;Lee, Kyung-Bo;Kim, Jong-Gu;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • The SMG project has been driven to secure food and water resources by closing of the SMG dyke for the preparation of the unification of Korean peninsular. It was investigated for pollution loads, land use distribution and water consumption for environmental assessments in two watersheds, the Mankyeong River (MK) and the Dongjin River (DJ) to assess the role of agricultural land on the alleviation of pollution loads to the SMG basin. It is needed to give the priority in managing pollution sources to conserve freshwater in the Saemangeum (SMG) basin after the completion of the SMG reclamation from tideland. The MK has $700million\;m^3$ water of which 14.1% were used for living, 73.6% for agriculture and 12.3% for industry. The DJ has $505million\;m^3$ water of which 3.0% for living, 94.5% for agriculture and 2.5% for industry. As compared to proportion of each land of total area, agricultural land was 1.4 times larger, livestock farming 7 times larger, forest 0.74 times smaller, and built-up area 0.67 times smaller in DJ watershed than in MK watershed. Pollution sources in MK and DJ watersheds were originated at a higher proportion from population including the sewage disposal and a livestock farming area rather than from the land. Water consumption and land use distribution influenced the water quality of the rivers; DJ watershed had far lower value of electric conductivity, $BOD_5$, TN and TP than MK watershed. A large proportion of paddy field also influenced to reduce pollute loadings after rainfall; DJ watershed, which has a relatively large area of paddy fields, had a far lower delivery load after rainfall than MK watershed even though DJ watershed had large livestock farming area. As paddy fields was irrigated by Iksancheon water, 37% of nitrogen, 50% of phosphates and 14.0% of $BOD_5$ was removed by the paddy field just after flowing 150 meter, and rice plants could remove TN 100.0 kg, $P_2O_5$ 24.0 kg, and $K_2O$ 119.2 kg per hectare at harvest by irrigation of Iksancheon water. Conclusively, rice paddy fields played a positive role to conserve the water quality in the Iksancheon watershed.