• Title/Summary/Keyword: Irregularity

Search Result 847, Processing Time 0.03 seconds

Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study

  • Wang, Jun;Ning, Jianguo;Qiu, Pengqi;Yang, Shang;Shang, Hefu
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.375-383
    • /
    • 2019
  • In underground retreating longwall coal mining, hard roof collapse is one of the most challenging safety problems for mined-out areas. Identifying precursors for hard roof collapse is of great importance for the development of warning systems related to collapse geohazards and ground control. In this case study, the Xinhe mine was chosen because it is a standard mine and the minable coal seam usually lies beneath hard strata. Real-time monitoring of hard roof collapse was performed in longwall face 5301 of the Xinhe mine using support resistance and microseismic (MS) monitoring; five hard roof collapse cases were identified. To reveal the characteristics of MS activity during hard roof collapse development and to identify its precursors, the change in MS parameters, such as MS event rate, energy release, bursting strain energy, b value and the relationships with hard roof collapse, were studied. This research indicates that some MS parameters showed irregularity before hard roof collapse. For the Xinhe coalmine, a substantial decrease in b value and a rapid increase in MS event rate were reliable hard roof collapse precursors. It is suggested that the b value has the highest predictive sensitivity, and the MS event rate has the second highest.

Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities (수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구)

  • Choi, In-Hyuk;Baek, Eun-Rim;Lee, Sang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

Stochastic analysis of the rocking vulnerability of irregular anchored rigid bodies: application to soils of Mexico City

  • Ramos, Salvador;Arredondo, Cesar;Reinoso, Eduardo;Leonardo-Suarez, Miguel;Torres, Marco A.
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.71-86
    • /
    • 2021
  • This paper focuses on the development and assessment of the expected damage for the rocking response of rigid anchored blocks, with irregular geometry and non-uniform mass distribution, considering the site conditions and the seismicity of Mexico City. The non-linear behavior of the restrainers is incorporated to evaluate the pure tension and tension-shear failure mechanisms. A probabilistic framework is performed covering a wide range of block sizes, slenderness ratios and eccentricities using physics-based ground motion simulation. In order to incorporate the uncertainties related to the propagation of far-field earthquakes with a significant contribution to the seismic hazard at study sites, it was simulated a set of scenarios using a stochastic summation methods of small-earthquakes records, considered as Empirical Green's Function (EGFs). As Engineering Demand Parameter (EDP), the absolute value of the maximum block rotation normalized by the body slenderness, as a function of the peak ground acceleration (PGA) is adopted. The results show that anchorages are more efficient for blocks with slenderness ratio between two and three, while slenderness above four provide a better stability when they are not restrained. Besides, there is a range of peak intensities where anchored blocks located in soft soils are less vulnerable with respect to those located in firm soils. The procedure used in here allows to take decisions about risk, reliability and resilience assessment of different types of contents, and it is easily adaptable to other seismic environments.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Clinical factors affecting the longevity of fixed retainers and the influence of fixed retainers on periodontal health in periodontitis patients: a retrospective study

  • Han, Ji-Young;Park, Seo Hee;Kim, Joohyung;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.163-178
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate clinical factors affecting the longevity of fixed retainers and the influence of fixed retainers on periodontal health in periodontitis patients. Methods: In total, 52 patients with at least 2 years of follow-up after periodontal and orthodontic treatment were included in this study. After scaling and root planing, orthodontic treatment with fixed appliances or clear aligners was performed. Fixed retainers with twist-flex stainless steel wires were bonded to the palatal or lingual sides of anterior teeth. Changes in clinical parameters, including the plaque index, gingival index, calculus index (CI), probing pocket depth, and radiographic bone levels, were evaluated before bonding of fixed retainers and at a 12-month follow-up. Cumulative survival rates (CSRs) for retainer failure were evaluated according to sex, site, CI, stage of periodontitis, and the severity of the irregularity with the log-rank test and hazard ratios (HRs). Results: Twelve months after bonding of fixed retainers, improvements were observed in all clinical parameters except CI and radiographic bone gain. The overall CSR of the retainers with a CI <1 at the 12-month follow-up after bonding of fixed retainers was significantly higher than that of the retainers with a CI ≥1 at the 12-month follow-up (log-rank test; P<0.001). Patients with stage III (grade B or C) periodontitis had a higher multivariate HR for retainer failure (5.4; 95% confidence interval, 1.22-23.91; P=0.026) than patients with stage I (grade A or B) periodontitis. Conclusions: Although fixed retainers were bonded in periodontitis patients, periodontal health was well maintained if supportive periodontal treatment with repeated oral hygiene education was provided. Nonetheless, fixed retainer failure occurred more frequently in patients who had stage III (grade B or C) periodontitis or a CI ≥1 at 12-month follow-up after bonding of fixed retainers.

Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites (LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가)

  • HWANG, JUNE-HYEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

Beat control method of Korean bells using artificial dumshoi (인공 덤쇠를 이용한 한국종의 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Jae Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.192-200
    • /
    • 2021
  • Korean bell is a macroscopically axi-symmetrical structure, but has a slight asymmetry due to complex patterns and casting irregularity. Small asymmetry separates one vibration mode into a mode pair with slight frequency difference. The mode pair interferes and creates a beat. The vivid beat with an appropriate period makes the bell sound magnificent and lively feeling. In this study, we propose a method to make the vivid beat using artificial dumshoi. This method creates the vivid beat by designing artificial dumshoi that overwhelms the bell asymmetry. To this end, the asymmetry of Korean bell is quantified by analyzing the beat period data of a number of Korean bells cast in modern times. Based on the measured beat period data, the magnitude of asymmetry is quantified using an equivalent bell model and artificial dumshoi is applied. The movement of mode pair by dumshoi is predicted through finite element analysis. Finally, a design example of the artificial dumshoi for clear beat is introduced.

Homozygous Missense Epithelial Cell Adhesion Molecule Variant in a Patient with Congenital Tufting Enteropathy and Literature Review

  • Guvenoglu, Merve;Simsek-Kiper, Pelin Ozlem;Kosukcu, Can;Taskiran, Ekim Z.;Saltik-Temizel, Inci Nur;Gucer, Safak;Utine, Eda;Boduroglu, Koray
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.6
    • /
    • pp.441-452
    • /
    • 2022
  • Congenital diarrheal disorders (CDDs) with genetic etiology are uncommon hereditary intestinal diseases characterized by chronic, life-threatening, intractable watery diarrhea that starts in infancy. CDDs can be mechanistically divided into osmotic and secretory diarrhea. Congenital tufting enteropathy (CTE), also known as intestinal epithelial dysplasia, is a type of secretory CDD. CTE is a rare autosomal recessive enteropathy that presents with intractable neonatal-onset diarrhea, intestinal failure, severe malnutrition, and parenteral nutrition dependence. Villous atrophy of the intestinal epithelium, crypt hyperplasia, and irregularity of surface enterocytes are the specific pathological findings of CTE. The small intestine and occasionally the colonic mucosa include focal epithelial tufts. In 2008, Sivagnanam et al. discovered that mutations in the epithelial cell adhesion molecule (EpCAM, MIM# 185535) were the genetic cause of CTE (MIM# 613217). More than a hundred mutations have been reported to date. Furthermore, mutations in the serine peptidase inhibitor Kunitz type 2 (SPINT2, MIM# 605124) have been linked to syndromic CTE. In this study, we report the case of a 17-month-old male infant with congenital diarrhea. Despite extensive etiological workup, no etiology could be established before admission to our center. The patient died 15 hours after being admitted to our center in a metabolically decompensated state, probably due to a delay in admission and diagnosis. Molecular autopsy with exome sequencing revealed a previously reported homozygous missense variant, c.757G>A, in EpCAM, which was confirmed by histopathological examination.

Image Steganography for Hiding Hangul Messages in Hybrid Technique using Variable ShiftRows (가변 ShiftRows를 이용한 하이브리드 기법에서 한글 메시지 은닉을 위한 이미지 스테가노그래피)

  • Ji, Seon-su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 2022
  • Information plays an important role in modern society. Most of the information is processed and moved in the digital space. In cyberspace, confidential communication based on resistance and security is fundamental. It is essential to protect the information sent and received over the network. However, information may be leaked and forged by unauthorized users. The effectiveness of the existing protection system decreases as an innovative technique is applied to identify the communication contents by a third party. Steganography is a technique for inserting secret information into a specific area of a medium. Stegganography and steganalysis techniques are at odds with each other. A new and sophisticatedly implemented system is needed to cope with the advanced steganalysis. To enhance step-by-step diffusion and irregularity, I propose a hybrid implementation technique of image steganography for Hangul messages based on layered encryption and variable ShiftRows. PSNR was calculated to measure the proposed steganography efficiency and performance. Compared to the basic LSB technique, it was shown that the diffusion and randomness can be increased even though the PSNR decreased by 1.45%.

Comparative analysis of existing reinforced concrete buildings damaged at different levels during past earthquakes using rapid assessment methods

  • Sezer Aynur;Hilal Meydanli Atalay
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.793-808
    • /
    • 2023
  • Türkiye is located in a region where destructive earthquakes are frequently experienced due to its geological characteristics and geographical location. Therefore, considering the possibility of a devastating earthquake at any time, determining the reinforced concrete (RC) building seismic safety, constructed before or after the current seismic buildings code, is one of the most important issues to be completed firstly. For this purpose, rapid assessment methods developed to quickly determine the seismic safety of buildings are available in the literature. Comparison of the principles of Principles of the Determination of Risky Structures-2019, Column and Wall Index Method, P25 Scoring Method and Improved Discriminant Analysis Method, which are among these methods, have been aimed within the scope of this study. Within the scope of this paper, a total of 43 buildings in the Yalova/Çınarcık region of Türkiye that the damage level was determined by street observation method immediately after the 1999 Kocaeli (Izmit) Earthquake; 15 buildings with heavy damage and 28 buildings with moderate damage were examined by rapid assessment methods. Although the risk detection difference was not separated as a clear line in any of the methods used, the results obtained from the rapid assessment methods are evaluated as being compatible with the detected after earthquake structural seismic behavior of the buildings. The PDRS-2019 and column and wall index method gave the most approximate results. In the results obtained from the analyzes; structural features such as number of floors, frame continuity, soft/weak story irregularity, effective shear strength area, existence of heavy overhangs in plan, type of structural system have been found to be significantly effective on the earthquake behavior of buildings.