• Title/Summary/Keyword: Irregular Frequency

Search Result 444, Processing Time 0.027 seconds

Atrial Fibrillation Detection Algorithm through Non-Linear Analysis of Irregular RR Interval Rhythm (불규칙 RR 간격 리듬의 비선형적 특성 분석을 통한 심방세동 검출 알고리즘)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2655-2663
    • /
    • 2011
  • Several algorithms have been developed to detect AF which rely either on the form of P waves or the based on the time frequency domain analysis of RR variability. However, locating the P wave fiducial point is very difficult because of the low amplitude of the P wave and the corruption by noise. Also, the time frequency domain analysis of RR variability has disadvantage to get the details of irregular RR interval rhythm. In this study, we describe an atrial fibrillation detection algorithm through non-linear analysis of irregular RR interval rhythm based on the variability, randomness and complexity. We employ a new statistical techniques root mean squares of successive differences(RMSSD), turning points ratio(TPR) and sample entropy(SpEn). The detection algorithm was tested using the optimal threshold on two databases, namely the MIT-BIH Atrial Fibrillation Database and the Arrhythmia Database. We have achieved a high sensitivity(Se:94.5%), specificity(Sp:96.2%) and Se(89.8%), Sp(89.62%) respectively.

Time Response Analysis of Caissons by Installing New Caisson on Existing Caisson Breakwater in Irregular Wave Condition (기존 케이슨방파제에 신규 케이슨 추가설치에 따른 불규칙파 조건에서 케이슨들의 시간응답 평가)

  • Min Su, Park;Young Taek, Kim;Sangki, Park;Jiyoung, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.233-246
    • /
    • 2022
  • The design and the construction were carried out by installing new caissons on the back or the front of existing caissons to increase the structural stability of caisson breakwaters. In this study, we used the ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the effects of wave-structure interaction when new caissons were additionally installed on existing caisson breakwaters. The wave force characteristics acting on the individual caisson were analyzed according to the distance among caissons in frequency domain analysis. In addition, the dynamic wave force characteristics were closely examined on the basis of the frequency at which the unusual distribution of wave forces occurs in irregular wave conditions using time domain analysis.

Surveying the Impact of Work Hours and Schedules on Commercial Motor Vehicle Driver Sleep

  • Hege, Adam;Perko, Michael;Johnson, Amber;Yu, Chong Ho;Sonmez, Sevil;Apostolopoulos, Yorghos
    • Safety and Health at Work
    • /
    • v.6 no.2
    • /
    • pp.104-113
    • /
    • 2015
  • Background: Given the long hours on the road involving multiple and interacting work stressors (i.e., delivery pressures, irregular shifts, ergonomic hazards), commercial drivers face a plethora of health and safety risks. Researchers goal was to determine whether and to what extent long-haul trucker work schedules influence sleep duration and quality. Methods: Survey and biometric data collected from male long-haul truck drivers at a major truckstop in central North Carolina over a six month period. Results: Daily hours worked (mean = 11 hours, 55 minutes) and frequency of working over government-mandated daily HOS regulations (23.8% "frequently or always") were statistically significant predictors of sleep duration. Miles driven per week (mean = 2,812.61), irregular daily hours worked (63.8%), and frequency of working over the daily hour limit (23.8% "frequently or always") were statistically significant predictors of sleep quality. Conclusion: Implications of findings suggest a comprehensive review of the regulations and operational conditions for commercial motor vehicle drivers be undertaken.

A SURVEY OF REPEATED DENTAL TREATMENT UNDER GENERAL ANESTHESIA FOR DISABILITIES (장애인 환자의 전신마취 하 반복된 치과치료에 대한 조사)

  • Choi, Hyojung;Nam, Soonhyeun;Kim, Hyunjung
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • The purpose of this study was to analyze the dental treatment of patients with disabilities, especially according to the frequency of general anesthesia, and to propose the improvements in oral care. The subjects of the present study were 85 patients including age, sex, medical condition, dental treatment and the number of general anesthesia. The patients were divided into regular and irregular check groups according to their follow-up patterns. These two groups were compared for the frequency of general anesthesia and the type of repeated treatment. The results showed that restorative treatment was superior in numbers under first visit of general anesthesia. And more general anesthesia was performed in the irregular recall check group compared with the regular recall check group. This survey suggest that easy access to a dental clinic and the convenience of treatment is needed. On the other hand, there is a time limit on the dental care for disabilities by the dentist. Therefore oral care training program should be simultaneously provided for parents to improve the efficiency of dental care at home. In conclusion, efforts should be made for more comprehensive and effective dental care including regular recall check and preventive home care for disabilities.

The Characteristics of Wave Energy Variations by Impermeable Submerged Breakwater Using VOF Method in Irregular Wave Fields (VOF 법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지 변형특성)

  • 허동수;김도삼
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2003
  • This study is to numerically investigate the characteristics of wave energy variations propagating over impermeable submerged breakwaters with irregular waves. Two-dimensional numerical wave flume based on the VOF method was used. VOF method is the most efficient capable of simulating free surfaces including wave breaking. From the computed frequency spectrum results, wave breaking play important role in ability of the submerged breakwaters to dissipate incident wave energy. In case of occurring wave breaking, our analysis shows that wave energy moves to short wave period on one-row impermeable submerged breakwater's lee side and is widely distributed not having peak period on two- row impermeable submerged breakwater's lee side.

Analysis of the Wave Exciting Forces and Steady Drift Forces on a Tension Leg Platform in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 인장계류식 해양구조물에 작용하는 파강제력 및 정상표류력 해석(주파수영역 해석))

  • 이창호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2001
  • A numerical procedure is described for simultaneously predicting the wave exciting forces and drift forces on a Tension Leg Platform (TLP) in multi-directional irregular waves. The numerical approach is based on a three dimensional source distribution method to the wave exciting forces, a far-field method to the steady drift forces and a spectral analysis technique of directional waves. The spectral description for the linear system of TLP in the frequency domain is sufficient to completely define the wave exciting forces and steady drift forces. This is because both the wave inputs and the outputs are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. Numerical results of steady drift forces are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.

A Study on PV AC-Module with Active Power Decoupling and Energy Storage System

  • Won, Dong-Jo;Noh, Yong-Su;Lim, Hong-Woo;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1894-1903
    • /
    • 2016
  • In general, electrolytic capacitors are used to reduce power pulsations on PV-panels. However, this can reduce the reliability of the PV AC-module system, because electrolytic capacitors have a shorter lifetime than PV-panels. In addition, PV-panels generate irregular power and inject it into the grid because the output power of a PV-panel depends on the surrounding conditions such as irradiation and temperature. To solve these problems, a grid-connected photovoltaic (PV) AC-module with active power decoupling and energy storage is proposed. A parallel bi-directional converter is connected to the AC module to reduce the output power pulsations of PV-panels. Thus, the electrolytic capacitor can be replaced with a film capacitor. In addition, the irregular output power due to the surrounding conditions can be regulated by using a parallel energy storage circuit. To maintain the discontinuous conduction mode at low irradiation, the frequency control method is adopted. The design method of the proposed converter and the operation principles are introduced. An experimental prototype rated at 125W was built to verify the performance of the proposed converter.

Experiment on Sloshing of Annular Cylindrical Tank for Development of Attitude Control Devices of Floating Offshore Wind Turbines (부유식 해상풍력발전기의 자세제어장치 개발을 위한 환형 실린더 탱크의 슬로싱 실험)

  • Seo, Myeongwoo;Jeong, Weuibong;Cho, Jinrae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2013
  • The floating offshore wind turbines are usually exposed to the wave and wind excitations which are irregular and undirected. In this paper, the sloshing characteristics of annular cylindrical tank were experimentally investigated to reduce the structural dynamic motion of floating offshore wind turbine which is robust to the irregular change of excitation direction of wind and wave. The formula for the natural sloshing frequencies of this annular cylindrical tank was derived theoretically. In order to validate this formula, the shaking equipment was established and frequency response functions were measured. Two types of tank were considered. The first and second natural sloshing frequencies were investigated according to the depth of the water. It has been observed that between theoretical and experimental results shows a good agreement.