• Title/Summary/Keyword: Irreducible polynomial

Search Result 102, Processing Time 0.021 seconds

Efficient Bit-Parallel Multiplier for Binary Field Defind by Equally-Spaced Irreducible Polynomials (Equally Spaced 기약다항식 기반의 효율적인 이진체 비트-병렬 곱셈기)

  • Lee, Ok-Suk;Chang, Nam-Su;Kim, Chang-Han;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.3-10
    • /
    • 2008
  • The choice of basis for representation of element in $GF(2^m)$ affects the efficiency of a multiplier. Among them, a multiplier using redundant representation efficiently supports trade-off between the area complexity and the time complexity since it can quickly carry out modular reduction. So time of a previous multiplier using redundant representation is faster than time of multiplier using others basis. But, the weakness of one has a upper space complexity compared to multiplier using others basis. In this paper, we propose a new efficient multiplier with consideration that polynomial exponentiation operations are frequently used in cryptographic hardwares. The proposed multiplier is suitable fer left-to-right exponentiation environment and provides efficiency between time and area complexity. And so, it has both time delay of $T_A+({\lceil}{\log}_2m{\rceil})T_x$ and area complexity of (2m-1)(m+s). As a result, the proposed multiplier reduces $2(ms+s^2)$ compared to the previous multiplier using equally-spaced polynomials in area complexity. In addition, it reduces $T_A+({\lceil}{\log}_2m+s{\rceil})T_x$ to $T_A+({\lceil}{\log}_2m{\rceil})T_x$ in the time complexity.($T_A$:Time delay of one AND gate, $T_x$:Time delay of one XOR gate, m:Degree of equally spaced irreducible polynomial, s:spacing factor)

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

A Method for Distinguishing the Two Candidate Elliptic Curves in the Complex Multiplication Method

  • Nogami, Yasuyuki;Obara, Mayumi;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2006
  • In this paper, we particularly deal with no $F_p$-rational two-torsion elliptic curves, where $F_p$ is the prime field of the characteristic p. First we introduce a shift product-based polynomial transform. Then, we show that the parities of (#E - 1)/2 and (#E' - 1)/2 are reciprocal to each other, where #E and #E' are the orders of the two candidate curves obtained at the last step of complex multiplication (CM)-based algorithm. Based on this property, we propose a method to check the parity by using the shift product-based polynomial transform. For a 160 bits prime number as the characteristic, the proposed method carries out the parity check 25 or more times faster than the conventional checking method when 4 divides the characteristic minus 1. Finally, this paper shows that the proposed method can make CM-based algorithm that looks up a table of precomputed class polynomials more than 10 percent faster.

  • PDF

Design of LFSR Multipliers for Public-key Cryptosystem (공개키 암호 시스템을 위한 LFSR 곱셈기 설계)

  • 이진호;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • This paper presents new architectures based on the linear feedback shia resister architecture over GF(2m). First we design a modular multiplier and a modular squarer, then propose an architecture by combing the multiplier and the squarer. All architectures use an irreducible AOP (All One Polynomial) as a modulus, which has the properties of all coefficients with '1'. The proposed architectures have lower hardware complexity than previous architectures. They could be. Therefore it is useful for implementing the exponentiation architecture, which is the con operation in public-key cryptosystems.

  • PDF

Design of an Operator Architecture for Finite Fields in Constrained Environments (제약적인 환경에 적합한 유한체 연산기 구조 설계)

  • Jung, Seok-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • The choice of an irreducible polynomial and the representation of elements have influence on the efficiency of operators for finite fields. This paper suggests two serial multiplier for the extention field GF$(p^n)$ where p is odd prime. A serial multiplier using an irreducible binomial consists of (2n+5) resisters, 2 MUXs, 2 multipliers of GF(p), and 1 adder of GF(p). It obtains the mulitplication result after $n^2+n$ clock cycles. A serial multiplier using an AOP consists of (2n+5) resisters, 1 MUX, 1 multiplier of CF(p), and 1 adder of GF(p). It obtains the mulitplication result after $n^2$+3n+2 clock cycles.

A Study on Construction of Multiple-Valued Multiplier over GF($p^m$) using CCD (CCD에 의한 GF($p^m$)상의 다치 승산기 구성에 관한 연구)

  • 황종학;성현경;김흥수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.60-68
    • /
    • 1994
  • In this paper, the multiplicative algorithm of two polynomials over finite field GF(($p^{m}$) is presented. Using the presented algorithm, the multiple-valued multiplier of the serial input-output modular structure by CCD is constructed. This multiple-valued multiplier on CCD is consisted of three operation units: the multiplicative operation unit, the modular operation unit, and the primitive irreducible polynomial operation unit. The multiplicative operation unit and the primitive irreducible operation unit are composed of the overflow gate, the inhibit gate and mod(p) adder on CCD. The modular operation unit is constructed by two mod(p) adders which are composed of the addition gate, overflow gate and the inhibit gate on CCD. The multiple-valued multiplier on CCD presented here, is simple and regular for wire routing and possesses the property of modularity. Also. it is expansible for the multiplication of two elements on finite field increasing the degree mand suitable for VLSI implementation.

  • PDF

CERTAIN CUBIC POLYNOMIALS OVER FINITE FIELDS

  • Kim, Hyung-Don;Kim, Jae-Moon;Yie, Ik-kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Motivated by XTR cryptosystem which is based on an irreducible polynomial $x^3-cx^2+c^px-1$ over $F_{p^2}$, we study polynomials of the form $F(c,x)=x^3-cx^2+c^qx-1$ over $F_{p^2}$ with $q=p^m$. In this paper, we establish a one to one correspondence between the set of such polynomials and a certain set of cubic polynomials over $F_q$. Our approach is rather theoretical and provides an efficient method to generate irreducible polynomials over $F_{p^2}$.

Design of the Multiplier in case of P=2 over the Finite Fields based on the Polynomial (다항식에 기초한 유한체상의 P=2인 경우의 곱셈기 설계)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • This paper proposes the constructing method of effective multiplier based on the finite fields in case of P=2. The proposed multiplier is constructed by polynomial arithmetic part, mod F(${\alpha}$) part and modular arithmetic part. Also, each arithmetic parts can extend according to m because of it have modular structure, and it is adopted VLSI because of use AND gate and XOR gate only. The proposed multiplier is more compact, regularity, normalization and extensibility compare with earlier multiplier. Also, it is able to apply several fields in recent hot issue IoT configuration.

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m) (유한체 GF(2m)상의 셀 배열 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.1-10
    • /
    • 2004
  • A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.