DOI QR코드

DOI QR Code

Design of the Multiplier in case of P=2 over the Finite Fields based on the Polynomial

다항식에 기초한 유한체상의 P=2인 경우의 곱셈기 설계

  • Park, Chun-Myoung (Department of Computer Engineering, Korea National University of Transportation)
  • 박춘명 (한국교통대학교 컴퓨터공학과)
  • Received : 2015.12.16
  • Accepted : 2016.01.22
  • Published : 2016.02.25

Abstract

This paper proposes the constructing method of effective multiplier based on the finite fields in case of P=2. The proposed multiplier is constructed by polynomial arithmetic part, mod F(${\alpha}$) part and modular arithmetic part. Also, each arithmetic parts can extend according to m because of it have modular structure, and it is adopted VLSI because of use AND gate and XOR gate only. The proposed multiplier is more compact, regularity, normalization and extensibility compare with earlier multiplier. Also, it is able to apply several fields in recent hot issue IoT configuration.

본 논문에서는 다항식에 기초하여 유한체상의 P=2인 경우의 효율적인 곱셈기를 구성하는 방법을 제안하였다. 제안한 곱셈기 회로는 다항식의 연산부와 mod F(${\alpha}$) 연산부, 모듈러 연산부로 구성된다. 또한, 이들 각 연산부는 모듈 구조를 가지므로 m의 확장에 따른 회로 구성이 용이하며 회로 구성에 사용한 소자는 AND 게이트와 XOR 게이트만으로 구성하여 정규성, 확장성이 용이하며 이를 기반으로 VLSI화에 적합하다. 제안한 곱셈기는 기존의 곱셈기에 비해 좀 더 콤펙트, 규칙적, 정규성과 확장성이 용이하며 최근의 IoT 환경에서의 여러 분야에 적용 및 응용이 가능할 것이다.

Keywords

References

  1. Jabir, A.M, Pradhan D.K. and Mathew J.,'GfXpress: A Technique for Synthesis and Optimization of Polynomials', IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.698-711, Vol.27, Issue 4, 2008. https://doi.org/10.1109/TCAD.2008.917586
  2. Tummeltshammer P., Hoe J.C. and Puschel M.,'Time-Multiplexed Multiple-Constant Multiplication', IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.1551-1563, vol.26, Issue 9, 2007. https://doi.org/10.1109/TCAD.2007.893549
  3. Fenn S.T.J., Benaissa. M. and Taylor, D.,'Finite field inversion over the dual basis,' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.134-137, Vol. 4, Issue 1, 1996. https://doi.org/10.1109/92.486087
  4. Imana. J.L.,'Low Latency Polynomial Basis Multiplier,' IEEE Transactions on Circuits and Systems I, pp.935-946, Vol. 58, Issue 5, 2011.
  5. Psarakis, M., Gizopoulos, D. and Paschalis, A.'Built-in sequential fault self-testing of array multipliers,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.449-460, Vol. 24, Issue 3, 2005. https://doi.org/10.1109/TCAD.2004.842806
  6. Paar C., Fleischmann P. and Soria-Rodriguez P.,'Fast arithmetic for public-key algorithms in Galois fields with composite exponents', IEEE Transactions on Computers, pp.1025-1034, Vol.48, Issue 10, 1999. https://doi.org/10.1109/12.805153
  7. Poolakkaparambil M., Mathew J., Jabir. A.M. and Pradhan, D.K.,'A Low-Complexity Multiple Error Correcting Architecture Using Novel Cross Parity Codes Over GF,' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.1448-1458, Vol.23, Issue 8, 2015. https://doi.org/10.1109/TVLSI.2014.2341631
  8. Dimitrakopoulos G. and Paliouras V.,'A novel architecture and a systematic graph-based optimization methodology for modulo multiplication,' IEEE Transactions on Circuits and Systems I, pp.354-370, Vol. 51, Issue 2, 2004. https://doi.org/10.1109/TCSI.2003.820243
  9. Jain S.K., Leilei Song and Parhi K.K.,'Efficient semisystolic architectures for finite-field arithmetic,' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.101-113, Vol. 6, Issue 1, 1998. https://doi.org/10.1109/92.661252
  10. Elleithy K.M. and Bayoumi M.A.,'A systolic architecture for modulo multiplication,' IEEE Transactions on Circuits and Systems II, pp.715-729, Vol. 42, Issue 11, 1995. https://doi.org/10.1109/81.473579