• Title/Summary/Keyword: Irradiation Intensity

Search Result 447, Processing Time 0.036 seconds

One-time measurement of irradiation intensity of Solar Simulator using cds photo-sensors (cds 광전소자(光電素子)를 이용한 인공태양(人工太陽) 일사강도(日射强度)의 동시측정(同時測定))

  • Bai, K.;Cho, S.H.;Lee, N.H.;Auh, P.C.M.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.28-34
    • /
    • 1985
  • There are two kinds of irradiation intensity deviation, depending on time and position, on illuminated plane when thermal performance of solar collector is tested by using solar simulator. In this study we measured only position deviation of irradiation intensity using 45-cds photosensors and data acqusition system and found the point of average value. By this result we can improve the accuracy of irradiation measurement in indoor test of solar collector.

  • PDF

ESR Spectroscopy for Detecting Gamma-Irradiated Shellfishes (방사선 조사된 조개류의 확인을 위한 ESR Spectroscopy의 이용)

  • 남혜선;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Electron spin resonance (ESR) spectroscopy was used to investigate the effect of irradiation dose on the ESR signal intensity and to identify the stability of radicals after 9 weeks of storage in order to detect irradiated shellfishes. The irradiated shellfishes (short-necked clam, purplish washington clam, freshwater clam, jackknifed clam, scallop and hard-shell mussel) presented an asymmetric absorption in shape at $g_{1}$=2.002~2.003 and $g_{2}$=1.998. The strength of the ESR signal increased linearly with the applied doses (1~7 kGy). A highly positive correlation coefficients ($R^{2}$=0.9136~0.9896) were obtained between the irradiation dose and corresponding ESR signal intensity. The intensity of the signals after irradiation was stable even after 9 weeks of storage at 5$\pm$1$^{\circ}C$.

  • PDF

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.

ESR Signal in Different Cuts of Irradiated Chicken, Pork and Beef

  • Nam, Hye-Seon;Yang, Jae-Seung;Ly, Sun-Yung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.254-260
    • /
    • 2000
  • Electron spin resonance (ESR) spectroscopy was used to detect irradiated meat containing bones (chicken, pork and beef), to investigate the effect of irradiation dose on the ESR signal intensity and to identify the stability of radicals under 9 weeks of storage. Chicken, pork and beef were irradiated with doses 0, 1, 3, 5 and 7 kGy at room temperature using a Co-60 irradiator. Bones were pieced and dried, which were placed in a quartz tube within an Electron paramagnetic resonance (EPR) spectrometer resonator cavity. The irradiated bone presented an asymmetric absorption in shape, different from that of a non-irradiated one. The signal intensity of smaller animals are lower than larger species. Variation was observed between samples of the same species depending on the calcification status of the bone. Moreover different irradiation doses produced different signal areas that make possible to estimate the absorbed dose of treated meat. The ESR signal stability after irradiation was stable in even after a 9 week storage at room temperature.

  • PDF

Properties of Pulsed Photostimulated Luminescence and Thermoluminescence for Detection of Gamma-Irradiated Teas during Storage

  • Kausar, Tusneem;Kim, Byeong-Keun;Yang, Jae-Seung;Byun, Myung-Woo;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • Green, black and oolong teas were irradiated by $^{60}$ Co-gamma rays (0~10 kGy) and were investigated for detection of irradiation treatment using pulsed photostimulated luminescence (PPSL) and thermoluminescence (TL) during storage. Teas irradiated at 2.5 kGy or more showed a photon count of greater than 5000 counts/60 sec while the non-irradiated yielded only 650~1000 count/60 sec. Correlation coefficients between irradiation dose and photon counts/60 sec were 0.8951, 0.7934 and 0.9007 for green, black and oolong teas, respectively. The TL glow curves for minerals isolated from the non-irradiated teas were situated at about 30$0^{\circ}C$ with a low intensity, but for irradiated samples were approximately 15$0^{\circ}C$ with a high intensity. The TL ratios (TL$_1$/TL$_2$), calculated from values after initial radiation and then after re-irradiation of the teas, were below 0.1 for the non-irradiated samples and higher than 1.44 for all irradiated samples, enhanced the reliability of the identification results for TL. The signal intensity of PPSL and TL for irradiated teas decreased with the lapse of post-irradiation storage time at room temperature but was still distinguishable from that of the non-irradiated samples even after one year.

Deformation of the AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor characteristics by UV irradiation

  • Lim, Jin Hong;Kim, Jeong Jin;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.531-536
    • /
    • 2013
  • The impact of UV irradiation process on the AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor was investigated. Due to the high intensity UV irradiation before the gate dielectric deposition, the conductivity of AlGaN/GaN structure and the drain saturation current of the transistor increased by about 10 %. However, the pinch off characteristics of transistor was severely deformed by the process. By comparing the electrical characteristics of the transistors, it was proposed that the high intensity UV irradiation formed a sub-channel under the two dimensional electron gas of AlGaN/GaN structure even without additional impurity injection.

Effects of fruit body characteristics of Lentinula edodes according to irradiation intensity of the green LED with sawdust substrate cultivation (표고 톱밥배지 재배시 녹색LED 광량이 자실체 생육에 미치는 영향)

  • Baek, Il-Sun;Jeoung, Yun-Kyeoung;Lee, Yun-Hae;Kim, Jeong-Han;Chi, Jeong-Hyun
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.270-274
    • /
    • 2014
  • In previous studies, we selected the green LED(light emitting diodes) for suitable wavelength of the light by higher commercial yields and lower ratio of the abnormal fruit body in Lentinula edodes. In this study, we aimed to select efficient irradiation intensity of the green LED. Stronger irradiation intensity of the green LED resulted in more polyphenol content of fruit body. And Polyphenol content of fluorescent lamp was similar to that of the green LED $20umol{\cdot}m^{-2}{\cdot}s^{-1}$.. Ergosterol content of the green LED $5umol{\cdot}m^{-2}{\cdot}s^{-1}$ was showed higher 2.1 times than that of the fluorescent lamp. In four level of irradiation intensity, 5, 10, 15, $20umol{\cdot}m^{-2}{\cdot}s^{-1}$ there was no big difference in characteristics of the fruit body. However the yield of fruit body in the green LED $5umol{\cdot}m^{-2}{\cdot}s^{-1}$ is higher than the others. In addition, The amount of electricity used of the green LED $5umol{\cdot}m^{-2}{\cdot}s^{-1}$ was reduced 15.9% than that of the fluorescent lamp. In conclusion, we selected $5umol{\cdot}m^{-2}{\cdot}s^{-1}$ for suitable irradiation intensity in Lentinula edodes with sawdust substrate cultivation.

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF

Effect of γ-Irradiation on the Molecular Properties of Myoglobin

  • Lee, Yong-Woo;Song, Kyung-Bin
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.590-594
    • /
    • 2002
  • To elucidate the effect of gamma-irradiation on the molecular properties of myoglobin, the secondary and tertiary structures, as well as the molecular weight size of the protein, were examined after irradiation at various irradiation doses. Gamma-irradiation of myoglobin solutions caused the disruption of the ordered structure of the protein molecules, as well as degradation, cross-linking, and aggregation of the polypeptide chains. A SDS-PAGE study indicated that irradiation caused initial fragmentation of the proteins and subsequent aggregation, due to cross-linking of the protein molecules. The effect of irradiation on the protein was more significant at lower protein concentrations. Ascorbic acid protected against the degradation and aggregation of proteins by scavenging oxygen radicals that are produced by irradiation. A circular dichroism study showed that an increase of the irradiation decreased the a-helical content of myoglobin with a concurrent increase of the aperiodic structure content. Fluorescence spectroscopy indicated that irradiation increased the emission intensity that was excited at 280 nm.

INFLUENCE OF LIGHT IRRADIATION OVER SELF-PRIMING ADHESIVE ON DENTIN BONDING (상아질접착제에 대한 광조사가 접착에 미치는 영향)

  • 류현욱;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.409-417
    • /
    • 2001
  • The purpose of this study was to investigate the influence of light irradiation over self-priming adhesive on dentin bonding. After acid etching the exposed dentin, a self-priming adhesive (Prime&Bond$^{\circledR}$NT dental adhesive system Dentsply DeTrey, GmbH, Konstanz, Germany) was applied and light irradiation was done for 20 sec with regular intensity (600 mW/$\textrm{cm}^2$) in group I and for 3 sec with ultra-high intensity (1930 mW/$\textrm{cm}^2$) in group III. No light irradiation was done over self-priming adhesive in groups II and IV. Composite resin was added on the self-priming adhesive and irradiated for 40 sec with regular intensity (600 mW/$\textrm{cm}^2$) in groups I and II and for 3 sec with ultra-high intensity (1930 mW/$\textrm{cm}^2$) in groups III and IV. To see the effect of light curing time on dentin bonding, another 3 group specimens were prepared. Without light-irradiation over self-priming adhesive, added composite resin was irradiated for 3, 6, or 12 sec with ultra-high intensity light. After bonded specimens were stored in 37$^{\circ}C$ distilled water for 24 hours, shear bond strength were measured using a universal testing machine (4202, Instron, Instron Co., U.S.A.) and fractured surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan). Statistical analysis were done with one-way, two-way ANOVA and chi-square test. The results were as follows : 1. The shear bond strengths from the groups irradiated over self-priming adhesive were significantly higher than those from the groups without irradiation (p<0.05). 2. There was no significant shear bond strength difference between regular intensity light irradiation groups and ultra-high intensity ones (p>0.05). 3. There was no significant shear bond strength difference among various irradiation time groups with ultra-high intensity ones (p>0.05). 4. In stereomicroscopic examination of fractured surfaces, adhesive-cohesive mixed failure mode was mostly seen in all groups, and there was no significant difference in failure mode among groups (p>0.05).

  • PDF