• Title/Summary/Keyword: Irradiation Dose

Search Result 1,996, Processing Time 0.03 seconds

Radiation resistant Characteristics of Fiber Bragg Grating Sensors made with 800-nm femtosecond laser (800nm급 펨토초 레이저로 제작된 FBG 센서의 내방사선 특성)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu;Sohn, Ik-Bu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.711-713
    • /
    • 2017
  • Fiber Brag grating sensors were written in standard Ge-doped telecom optical fiber (Corning SMF-28) using an 800nm femtosecond laser and a phase mask. It were exposed to gamma-radiation up to a dose of 100 kGy to evaluate the radiation effect. The fs-FBG-2 sensor showed incomplete optical characteristics during irradiation, but the fs-FBG-1 sensor showed excellent radiation resistance with Bragg wavelength shift(BWS) of less than 10pm at a dose of 100 kGy.

  • PDF

Ultrastructural study of mouse ovary under X-ray irradiation (방사선 조사선량에 따른 생쥐 난소의 미세구조적 연구)

  • Yoon, Chul-Ho
    • Journal of radiological science and technology
    • /
    • v.28 no.3
    • /
    • pp.249-254
    • /
    • 2005
  • This study investigated the structural changes of folliculus ovarii according to the dose of the X-rays when mice were exposed to X-rays from 6MeV LINAC. The minute structural changes of folliculus ovarii were observed through an electron microscope with high magnification. Nuclei and protoplasm of granular cells in growing folliculus ovarii abruptly underwent minute structural changes according to the increase of dose of X-rays. Cell residue, by-product of cell decease, neutrophil and macrophage around follicular antrum were observed. The minute structural changes in granular cells showed typical characteristics of apoptosis: the increase of electronic density due to nuclear condensation, fragmentation of nuclei, and atrophy of protoplasm. Necrosis of cells was identified, but it was not so remarkable. Macrophage scattered with apoptotic bodies.

  • PDF

Photocatalytic activities and surface properties of e-beam treated carbon paper deposited $TiO_2$ using Atomic Layer Deposition (ALD)

  • Kim, Myoung-Joo;Seo, Hyun-Ook;Luo, Yuan;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.345-345
    • /
    • 2010
  • Thin film of $TiO_2$ deposited on carbon paper was fabricated by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. In this work, the photocatalytic activities of $TiO_2$ films with and without e-beam treatment were compared. The samples were treated by e-beam using e-beam energy of 1MeV and exposure range between 5 and 15kGy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyleneblue (MB) under UV irradiation (365nm) at room temperature using an UV-vis spectroscopy. The surface properties were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The sample treated by the low radiation dose has more catalytic activity than other ones. SEM images show that the high radiation dose caused the $TiO_2$ to aggregation on carbon paper. Due to the aggregation of $TiO_2$, the partially exposed carbon paper was oxidized.

  • PDF

Detection of Gamma-Irradiated Grains by Using DEFT/APC Method (곡류의 감마선 조사 검지를 위한 DEFT/APC 방법의 이용)

  • Oh, Kyeung-Nam;Lee, Sook-Young;Yang, Jae-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.380-384
    • /
    • 2002
  • For the screening of gamma-irradiated grains, domestic rice, glutinous rice, barley, and wheat were irradiated with 0.1, 0.3, 0.5, 0.7, and 1.0 kGy and screened using the DEFT/APC (Direct Epifluorescent Filter Technique/Aerobic Plate Count) method. The log DEFT/APT units increased with the dose increment in all samples, whereas the log APC unit decreased gradually. For rice, barley, and wheat, unirradiated and irradiated samples with below 0.3 kGy had 2.0 or lower logarithmic units, whereas those with 0.5 kGy or higher had 2.0 or higher logarithmic units. For glutinous rice, the sample irradiated with 0.5 kGy showed 1.92 logarithmic unit and those with 0.7 kGy or higher had 2.0 or higher logarithmic units. These results suggest that if the grains show 2.0 or higher logarithmic units, they could be assumed to have been irradiated at a dose level of at least 0.5 kGy. In conclusion, grains could be easily screened through the DEFT/APC method.

Coexistence of Radiation-induced Meningiomas and Shunt Related Pneumocephalus in a Patient with Successfully Treated Medulloblastoma

  • Kim, Young-Hoon;Kim, Chae-Yong
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.6
    • /
    • pp.403-407
    • /
    • 2007
  • The authors encountered a case of simultaneous radiation-induced multiple meningiomas and ventriculoperitoneal [VP] shunt-related pneumocephalus. A 35-year-old man, who had undergone surgery for medulloblastoma 21 years previously and subsequently received high dose craniospinal irradiation with adjuvant chemotherapy and later underwent a VP shunt because of hydrocephalus, presented with a severe headache and weakness of both lower extremities. Computed tomography showed an air pocket lesion in the left temporal lobe and a large amount of pneumocephalus with a bony defect of the left tegmen tympani. In addition, a 3 cm sized well enhancing mass was noted in the in the right middle cranial fossa and additional small enhancing nodule in the left frontal pole. He was treated by left temporal craniotomy and repair of the bony and dural defects of the left tegmentum tympanum through extradural and intradural approaches, respectively. Afterwards, he underwent right temporal craniotomy and gross total removal of a rapidly growing right middle fossa mass and a left frontal mass. The histological examination was consistent with atypical meningioma, WHO grade II. In conclusion, physicians have to consider the serious long term complications of high dose radiation therapy and VP shunt placement and need to perform the neuroradiologic follow-up after such treatments for several decades.

Proteome Analysis of Escherichia coli after High-dose Radiation

  • Lim, Sangyong;Lee, Misong;Joe, Minho;Song, Hyunpa;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Since proteomics can be employed to compare changes in the expression levels of many proteins under particular genetic and environmental conditions, using mass spectrometry to establish radiation stimulon, we performed two-dimensional gel electrophoresis and identified E. coli proteins whose expressions are affected by high dose of ionizing radiation. After exposure to 3 kGy, it was found that 6 proteins involved in carbon and energy metabolism were reduced. Although 4 of 7 protein spots showing a significant increase in expression level were neither identified nor classified, uridine phosphorylase (Udp), superoxide dismutase (SodB), and thioredoxin-dependent thiol peroxidase (Bcp) were proven to be up-regulated after irradiation. This suggests that E. coli subjected to high doses of radiation (3 kGy) may operate a defense system that is able to detoxify reactive oxygen species and stimulate the salvage pathway of nucleotide synthesis to replenish damaged DNA.

Pueraria montana var. lobata Root Extract Inhibits Photoaging on Skin through Nrf2 Pathway

  • Heo, Hee Sun;Han, Ga Eun;Won, Junho;Cho, Yeonoh;Woo, Hyeran;Lee, Jong Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Pueraria montana var. lobata is a bioactive substance with various beneficial health effects and has long been extensively used as a traditional medication for the treatment of fever, acute dysentery, diabetes, and cardiovascular diseases in Northeast Asian countries. The purpose of this study was to evaluate the cytoprotective activity of Pueraria montana var. lobata ethanol extract (PLE) for ultraviolet B (UVB)-induced oxidative stress in human dermal fibroblasts (HDF). It was hypothesized that PLE treatment ($25-100{\mu}g/ml$) would reduce intracellular reactive oxygen species (ROS) levels as well as increase collagen production in UVB-irradiated HDF. The results confirmed this theory, with collagen production increasing in the PLE treatment group in a dose-dependent manner. In addition, regulators of cellular ROS accumulation, including HO-1 and NOQ-1, were activated by Nrf2, which was mediated by PLE. Hence, intracellular levels of ROS were also reduced in the PLE treatment group in a dose-dependent manner. In conclusion, PLE increases collagen production and maintains hyaluronic acid (HA) levels in human dermal fibroblasts exposed to UVB-irradiation, thereby inhibiting photoaging.

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew;Knapp, Jordan;Lennox, Barry;Walters, Steve;Watts, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2198-2203
    • /
    • 2022
  • As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Results of Radiation Therapy for Carcinoma of the Uterine Cervix (자궁경부암의 방사선치료 성적)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.359-368
    • /
    • 1995
  • Purpose : This is a retrospective analysis for pattern of failure, survival rate and prognostic factors of 114 patients with histologically proven invasive cancer of the uterine cervix treated with definitive irradiation. Materials and Methods : One hundred fourteen patients with invasive carcinoma of the cervix were treated with a combination of intracavitary irradiation using Fletcher-Suit applicator and external beam irradiation by 6MV X-ray at the Ewha Womans University Hospital between March 1982 and Mar 1990. The median age was 53 years(range:30-77 years). FIGO stage distribution was 19 for IB, 23 for IIA, 42 for IIB, 12 for IIIA and 18 for IIIB. Summation dose of external beam and intracavitary irradiation to point A was 80-90 Gy(median:8580 cGy) in early stage(IB-IIA) and 85-100 Gy(median:8850 cGy) in advanced stage(IIB-IIIB). Kaplan-Meier method was used to estimate the survival rate and multivariate analysis for progrostic factors was performed using the Log likelihood for Weibull Results : The pelvic failure rates by stage were $10.5{\%}$ for IB. $8.7{\%}$ for IIA, $23.8{\%}$ for IIB, $50.0{\%}$ for IIIA and $38.9{\%}$ for IIIB. The rate of distant metastasis by stage were $0{\%}$ for IB, $8.7{\%}$ for IIA, $4.8{\%}$ for IIB. $0{\%}$ for IIIA and $11.1{\%}$ for IIIB. The time of failure was from 3 to 50 months and with median of 15 months after completion of radiation therapy. There was no significant coorelation between dose to point A($\leq$90 Gy vs >90 Gy) and pelvic tumor control(P>0.05). Incidence rates of grade 2 rectal and bladder complications were $3.5{\%}$(4/114) and $7{\%}$(8/114), respectively and 1 patient had sigmoid colon obstruction and 1 patient had severe cystitis. Overall 5-year survival rate was $70.5{\%}$ and disease-free survival rate was $53.6{\%}$. Overall 5-year survival rate by stage was $100{\%}$ for IB, $76.9{\%}$ for IIA, $77.6{\%}$ for IIB $87.5{\%}$ for IIIA and $69.1{\%}$ for IIIB. Five-rear disease-free survival rate by stage was $81.3{\%}$ for IB, $67.9{\%}$ for IIA, $46.8{\%}$ for IIB, $45.4{\%}$ for IIIA and $34.4{\%}$ for IIIB. The prognostic factors for disease-free survival rate by multivariate analysis was performance status(p= 0.0063) and response rate after completion of radiation therapy(p= 0.0026) but stage, age and radiation dose to point A were not siginificant. Conclusion : The result of radiation therapy for early stage of the uterine cervix cancer was relatively good but local control rate and survival rate in advanced stage were poor inspite of high dose irradiation to point A above 90 Gy. Prospective randomized studies are recommended to establish optimal tumor doses for various stages and volume of carcinoma of uterine cervix, And ajuvant chemotherapy or radiation-sensitizing agents must be considered to increase the pelvic control and survival rate in advanced cancer of uterine cervix.

  • PDF

Analysis of the Causes of Subfrontal Recurrence in Medulloblastoma and Its Salvage Treatment (수모세포종의 방사선치료 후 전두엽하방 재발된 환자에서 원인 분석 및 구제 치료)

  • Cho Jae Ho;Koom Woong Sub;Lee Chang Geol;Kim Kyoung Ju;Shim Su Jung;Bak Jino;Jeong Kyoungkeun;Kim Tae_Gon;Kim Dong Seok;Choi oong-Uhn;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.165-176
    • /
    • 2004
  • Purpose: Firstly, to analyze facto in terms of radiation treatment that might potentially cause subfrontal relapse in two patients who had been treated by craniospinal irradiation (CSI) for medulloblastoma, Secondly, to explore an effective salvage treatment for these relapses. Materials and Methods: Two patients who had high-risk disease (T3bMl, T3bM3) were treated with combined chemoradiotherapy CT-simulation based radiation-treatment planning (RTP) was peformed. One patient who experienced relapse at 16 months after CSI was treated with salvage surgery followed by a 30.6 Gy IMRT (intensity modulated radiotherapy). The other patient whose tumor relapsed at 12 months after CSI was treated by surgery alone for the recurrence. To investigate factors that might potentially cause subfrontal relapse, we evaluated thoroughly the charts and treatment planning process including portal films, and tried to find out a method to give help for placing blocks appropriately between subfrotal-cribrifrom plate region and both eyes. To salvage subfrontal relapse in a patient, re-irradiation was planned after subtotal tumor removal. We have decided to treat this patient with IMRT because of the proximity of critical normal tissues and large burden of re-irradiation. With seven beam directions, the prescribed mean dose to PTV was 30.6 Gy (1.8 Gy fraction) and the doses to the optic nerves and eyes were limited to 25 Gy and 10 Gy, respectively. Results: Review of radiotherapy Portals clearly indicated that the subfrontal-cribriform plate region was excluded from the therapy beam by eye blocks in both cases, resulting in cold spot within the target volume, When the whole brain was rendered in 3-D after organ drawing in each slice, it was easier to judge appropriateness of the blocks in port film. IMRT planning showed excellent dose distributions (Mean doses to PTV, right and left optic nerves, right and left eyes: 31.1 Gy, 14.7 Gy, 13.9 Gy, 6.9 Gy, and 5.5 Gy, respectively. Maximum dose to PTV: 36 Gy). The patient who received IMRT is still alive with no evidence of recurrence and any neurologic complications for 1 year. Conclusion: To prevent recurrence of medulloblastoma in subfrontal-cribriform plate region, we need to pay close attention to the placement of eye blocks during the treatment. Once subfrontal recurrence has happened, IMRT may be a good choice for re-irradiation as a salvage treatment to maximize the differences of dose distributions between the normal tissues and target volume.