• 제목/요약/키워드: Irradiated graphite $^{14}C$

검색결과 5건 처리시간 0.018초

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Proposal of a prototype plant based on the exfoliation process for the treatment of irradiated graphite

  • Pozzetto, Silvia;Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guidi, Giambattista
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.797-801
    • /
    • 2020
  • Most of irradiated graphite that should be disposed comes from moderators and reflectors of nuclear power plants. The quantity of irradiated graphite could be higher in the future if high-temperature reactors (HTRs) will be deployed. In this case noteworthy quantities of fuel pebbles containing semi-graphitic carbonaceous material should be added to the already existing 250,000 tons of irradiated graphite. Industry graphite is largely used in industrial applications for its high thermal and electrical conductivity and thermal and chemical resistance, making it a valuable material. Irradiated graphite constitutes a waste management challenge owing to the presence of long-lived radionuclides, such as 14C and 36Cl. In the ENEA Nuclear Material Characterization Laboratory it has been successfully designed a procedure based on the exfoliation process organic solvent assisted, with the purpose of investigate the possibility of achieving graphite significantly less toxic that could be recycled for other purpose [1]. The objective of this paper is to evaluate the possibility of the scalability from laboratory to industrial dimensions of the exfoliation process and provide the prototype of a chemical plant for the treatment of irradiated graphite.

Application of the Analytic Hierarchy Process (AHP) method to identify the most suitable approach for managing irradiated graphite

  • Giambattista Guidi;Giacomo Goffo;Anna Carmela Violante
    • Nuclear Engineering and Technology
    • /
    • 제56권11호
    • /
    • pp.4820-4825
    • /
    • 2024
  • Scientific literature studies irradiated graphite treatment. Research also covers graphite conditioning and its long-term behavior under disposal conditions. The European Commission's CARBOWASTE project, titled "Treatment and disposal of irradiated graphite and other carbonaceous waste", is a key reference for state-of-the-art studies on alternative solutions. It identified 24 strategic options for managing irradiated graphite throughout its complete life cycle. The methodology proposed in this paper entails the application of the Analytic Hierarchy Process (AHP) method to rank the 24 options, placing particular emphasis on the weighting of seven criteria for selecting management options for the irradiated graphite. The highest weights were assigned by experts to 'environment and public safety' (28.05 %) and 'worker safety' (26.16 %). The objective is to develop a standardized approach enabling waste management companies to identify the most appropriate management option, considering structural and legislative constraints in their operating country. Examining the study findings, option 19 "In-situ entombment" stands out as the best choice in both the CARBOWASTE project and the proposed methodology. Thus, this methodology could assist hypothetical entities in examining management options for irradiated graphite, with the aim of identifying the optimal solution for graphite waste disposal.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

Structural and radiological characterization of irradiated RBMK-1500 reactor graphite

  • Lagzdina, Elena;Lingis, Danielius;Plukis, Arturas;Plukiene, Rita;Germanas, Darius;Garbaras, Andrius;Garankin, Jevgenij;Gudelis, Arunas;Ignatjev, Ilja;Niaura, Gediminas;Krutovcov, Sergej;Remeikis, Vidmantas
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.234-243
    • /
    • 2022
  • This study aims to characterize the irradiated RBMK-1500 nuclear graphite in terms of both structural and radiological properties. The experimental results of morphological and structural analysis of the irradiated graphite samples by using SEM, Raman spectroscopy as well as the theoretical evaluation of primary displacement damage are presented. Moreover, the experimental and theoretical evaluation of the neutron flux is provided and the presence of several γ emitters in the analyzed graphite samples is assessed. Furthermore, the improved version of rapid analysis method for 14C activity determination is applied and the experimentally obtained results are compared with calculated ones. Results indicate that structural changes are uniform enough in all the analyzed samples. However, the distribution of radionuclides is non-homogeneous in the irradiated RBMK-1500 reactor graphite matrix. The comprehensive understanding of both structural and radiological characteristics of nuclear graphite is very important when dealing with decision about irradiated graphite waste management strategy or treatment options prior to its final disposal.