• 제목/요약/키워드: Iron-based catalysts

검색결과 25건 처리시간 0.029초

Synthesis of Carbon Nanofibers Based on Resol Type Phenol Resin and Fe(III) Catalysts

  • Hyun, Yu-Ra;Kim, Hae-Sik;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3177-3183
    • /
    • 2012
  • The carbon nanofibers (CNFs) used in this study were synthesized with an iron catalyst and ethylene as a carbon source. A concentration of 30 wt % iron(III) acetylacetonate was dissolved in resol type phenol resin and polyurethane foam was put into the solution. The sample was calendered after being cured at $80^{\circ}C$ in air for 24 h. Stabilization and carbonization of the resol type phenol resin and reduction of the $Fe^{3+}$ were completed in a high-temperature furnace by the following steps: 1) heating to $600^{\circ}C$ at a rate of $10^{\circ}C/min$ with a mixture of $H_2/N_2$ for 4 h to reduce the $Fe^{3+}$ to Fe; 2) heating to $1000^{\circ}C$ in $N_2$ at a rate $10^{\circ}C/min$ for 30 minutes for pyrolysis; 3) synthesizing CNFs in a mixture of 20.1% ethylene and $H_2/N_2$ at $700^{\circ}C$ for 2 h using a CVD process. Finally, the structural characterization of the CNFs was performed by scanning electron microscopy and a synthesis analysis was carried out using energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Specific surface area analysis of the CNFs was also performed by $N_2$-sorption.

내부식성이 우수한 졸-젤 전구체의 합성 및 이를 함유하는 유무기 하이브리드 코팅재 (Syntheses of Novel Sol-Gel Precursor Containing Anti-corrosive Functional Group and Their Uses in Organic-Inorganic Hybrid Coatings)

  • 한미정;맹지영;서지연
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.405-409
    • /
    • 2010
  • 내부식성이 우수한 기능기를 함유하는 새로운 졸-젤 전구체를 합성하고 이를 함유하는 유무기 하이브리드 코팅 조성물을 제조하였다. 코팅 조성물에는 통상의 졸-젤 전구체로 tetraethoxysilane을 사용하였고 비스페놀 A 타입의 에폭시를 실란화합물로 개질하였으며, 졸-젤 반응을 위하여 물과 HCl을 촉매로 사용하였다. 각 조성물은 졸-젤 전구체의 종류, 함량 등을 변화하여 다양한 코팅 조성물을 제조하였고 iron 기판위에 딥코팅하여 열경화하였다. 코팅된 iron 기판의 내부식성을 평가하기 위하여 염수분무시험과 전기화학적 임피던스 분광법을 사용하였는데, 내부식성 기능기를 함유한 유무기 하이브리드 코팅재가 일반적인 하이브리드 코팅재에 비해 매우 향상된 내부식성을 나타냄을 확인할 수 있었다. 내부식성 기능기를 함유한 코팅재의 경우, 0.1 M NaCl에서 500시간 이상 초기의 임피던스를 유지하는 반면, 일반적인 코팅재는 24시간 이후에 임피던스가 감소하는 것을 관찰할 수 있었다.

이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성 (Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts)

  • 김수정;전종기;한정식;임진형
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.190-194
    • /
    • 2016
  • Tricyclopentadiene (TCPD)는 차세대 고밀도에너지 연료인 tetrahydrotricyclopentadiene의 전구체로서 중요한 화합물이다. 본 연구에서는 이온성 액체가 담지된 메조포로스 실리카 촉매를 이용하여 dicyclopentadiene 소중합 반응을 통한 TCPD 합성에 관한 연구를 수행하였다. 나노기공의 크기가 다른 대표적인 메조포로스 실리카인 MCM-41과 SBA-15에 이온성 액체(IL)를 함침법을 이용하여 담지하고 소중합 촉매를 제조하였다. 음이온 전구체로 copper(I) chloride (CuCl) 또는 iron(III) chloride ($FeCl_3$), 양이온 전구체로 triethylamine hydrochloride (TEAC) 또는 1-butyl-3-methylimidazolium chloride(BMIC)를 사용하여 4가지 종류의 IL을 메조포로스 실리카에 담지하였다. 이온성 액체가 담지된 메조기공의 실리카를 사용하였을 때 이온성 액체만 사용하였을 때보다 TCPD 수율과 dicyclopentadiene (DCPD)의 전환율 측면에서 우수하였다. 특히, MCM-41에 루이스 산도가 낮은 CuCl계 이온성 액체를 담지할 때 TCPD 수율이 가장 높았다.

알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구 (Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods)

  • 윤원중;이지연;김재훈
    • 청정기술
    • /
    • 제30권1호
    • /
    • pp.62-67
    • /
    • 2024
  • 본 연구에서는 이산화탄소를 기반으로한 피셔-트롭시 반응에 사용되는 철계 촉매에 알칼리 금속인 Na를 함침 및 물리적 혼합 방식으로 도입하여 각각의 성능을 비교하였다. 제조된 촉매는 3.5 MPa, 330 ℃, H2/CO2 = 3의 가스 조성비에서 공간속도 4,000 mL h-1 gcat-1 조건으로 반응성을 평가하였다. 두 가지 촉매를 비교한 결과 Na를 함침한 경우 Na가 촉매 전체에 균일하게 분산되어 있지만 물리적 방법으로 혼합한 촉매는 상대적으로 표면에 위치하였다. 또한 Na를 함침한 촉매가 더 높은 액체 탄화수소(C5+) 수율과 낮은 CO 선택도를 보였다. 결론적으로 촉매 내의 Na 분포가 반응에 미치는 영향을 파악하였으며 도입 방식을 통해 이를 조절할 수 있음을 확인하였다.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

Allyloxy-and Benzyloxy-Substituted Pyridine-bis-imine Iron(II) and Cobalt(II) Complexes for Ethylene Polymerization

  • Kim Il;Han Byeong Heui;Kim Jae Sung;Ha Chang-Sik
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.2-7
    • /
    • 2005
  • A series of ethylene polymerization catalysts based on tridentate bis-imine ligands coordinated to iron and cobalt was reported. The ligands were prepared through the condensation of sterically bulky anilines with allyloxy-and benzyloxy-substituted 2,6-acetylpyridines. The pre-catalyst complexes were penta-coordinate species of the general formula $\{[(ArN=C(Me))_2(4-RO-C_5H_3N)]MCl_2\}$ (Ar=ortho dialkyl-substituted aryl ring; R=allyl, benzyl; M=Fe, Co). In the presence of ethylene and methyl alumoxane cocatalysts, these complexes were active for the polymerization of ethylene, with activities lower than those of metal complexes of the general formula $\{[(2-ArN=C(Me)_2C_5H_3N]MCl_2\}$ (Ar=ortho dialkyl-substituted aryl ring; M=Co, Fe), containing no substituents in 2,6-acetylpyridine ring. The effects of the catalyst structure and temperature on the polymerization activity, thermal properties, and molecular weight were discussed.

THE SCIENCE AND TECHNOLOGY OF MECHANICAL ALLOYING

  • Suryanarayana, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 추계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.10-10
    • /
    • 2000
  • Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This has now become an established commercial technique in producing oxide dispersion strengthened (ODS) nickel- and iron-based materials. The technique of MA is also capable of synthesizing non-equilibrium phases such as supersaturated solid solutions, metastable crystalline and quasicrystalline intermetallic phases, nanostructures, and amorphous alloys. In this respect, the capabilities of MA are similar to those of another important non-equilibrium processing technique, viz, rapid quenching of metallic melts. however, the science of MA is being investigated only during the past ten years or so. The technique of mechanochemistry, on the other hand, has had a long history and the materials produced this way have found a number of technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorber, fertilizers. catalysts, cosmetics, and waste management. The present talk will concentrate on the basic mechanisms of formation of non-equilibrium phases by the technique of MA and these aspects will be compared with those of rapid quenching of metallic melts. Additionally, the variety of technological applications of mechanically alloyed products will be highlighted.

  • PDF

Photocatalytic hydrogen production by water splitting using novel catalysts under UV-vis light irradiation

  • Marquez, Francisco;Masa, Antonio;Cotto, Maria;Garcia, Abraham;Duconge, Jose;Campo, Teresa;Elizalde, Eduardo;Morant, Carmen
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.33-45
    • /
    • 2014
  • Photocatalytic hydrogen generation by water splitting ($H_2O_{(1)}{\rightarrow}H_2_{(g)}+1/2O_2_{(g)}$) has been studied on photocatalysts based on Zn, Cd, Fe and Cu, synthesized by coprecipitation. Iron and copper nanoparticles were incorporated as cocatalysts to enhance the photocatalytic activity of the ZnCd solid solution. The effect of the different synthesis parameters (temperature, elemental atomic ratios, amount of Cu and Fe incorporated in the catalyst and calcination temperature) on the photocatalytic production of hydrogen has been studied in order to determine the best experimental synthesis conditions. The catalysts have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and BET. The experiments of photocatalytic water splitting were performed in aqueous solution of the photocatalysts previously dispersed in a soft ultrasound bath. The photocatalysts were irradiated under different lights ranging from 220 to 700 nm. The photocatalytic activity was found to be clearly dependent on the specific area of the photocatalyst.

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Yoon, Ha-Na;Yoo, Young-Dong;Seo, Kwan-Yong;In, June-Ho;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2830-2844
    • /
    • 2012
  • This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.