• 제목/요약/키워드: Iron pentacarbonyl

검색결과 14건 처리시간 0.029초

자성 폴리스티렌-폴리이미드 Core-Shell 마이크로스피어의 합성 (Synthesis of Magnetic Polystyrene-Polyimide Core-Shell Microsphere)

  • 안병현
    • Elastomers and Composites
    • /
    • 제47권2호
    • /
    • pp.168-173
    • /
    • 2012
  • 폴리아미드산을 안정제로 사용한 스티렌의 분산중합에 의해 core-shell 구조를 갖는 폴리스티렌-폴리이미드 core-shell 마이크로스피어를 얻었다. Iron pentacarbonyl을 마이크로스피어에 함침시킨 후 열분해하여 산화철 나노 입자를 갖는 자성 폴리스티렌-폴리이미드 마이크로스피어를 제조하였다. 자성 폴리스티렌-폴리이미드 마이크로스피어의 크기와 구조, 열적 특성 및 자성 특성을 조사하였는데, 자성 폴리스티렌-폴리이미드 마이크로스피어는 크기가 약 500 nm 정도로 균일하였으며 40%의 산화철 나노 입자를 가졌다. 산화철은 X선 회절시험에 의해 $Fe_3O_4$임이 확인되었다.

균일한 자성 고분자 입자의 합성 (Synthesis of Monodispersed Magnetic Polymer Particle)

  • 안병현
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.316-321
    • /
    • 2008
  • Styrene과 4-vinylpyridine의 공중합체(poly(st-co-4vp)) 입자를 무유화제 유화중합에 의해 합성하고 이 입자 내부에 iron pentacarbonyl을 침투시킨 후 열분해 시켜 입자의 표면과 내부에 산화철 나노입자를 갖는 자성 poly(st-co-4vp) 입자를 제조하였다. 얻어진 자성 poly(st-co-4vp) 입자의 크기와 분포, 열적 특성 및 자성 특성에 대해서 조사하였다. 자성 poly(st-co-4vp) 입자는 크기가 약 250 nm 정도로 매우 균일하였으며 약 14%의 산화철을 가졌다. 산화철은 XRD 시험에 의해 대부분 $Fe_3O_4$임이 확인되었으며 superconducting susceptometer (SQUID) 시험에 의해 자성 poly(st-co-4vp) 입자가 초상자성을 가짐을 확인하였다.

저압 초음파 분무 공정을 이용한 γ-Fe2O3 나노입자의 합성 (Synthesis of γ-Fe2O3 Nanoparticles by Low-pressure Ultrasonic Spraying)

  • 이창우;김순길;좌용호;이재성
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.19-25
    • /
    • 2007
  • This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure ${\gamma}-Fe_2O_3$ nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure ${\gamma}-Fe_2O_3$ nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl ($Fe(CO)_{5}$) in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over $800^{\circ}C$. Also magnetic properties, coercivity ($H_c$) and saturation magnetization ($M_s$) were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).

APS로 표면 처리한 Fe 나노 입자 촉매를 이용한 CNT의 직경제어 (Diameter Control of Carbon Nanotubes Using Surface Modified Fe Nano-Particle Catalysts with APS)

  • 이선우
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.478-481
    • /
    • 2013
  • Diameter controlled carbon nanotubes (CNTs) were grown using surface modified iron nano-particle catalysts with aminpropyltriethoxysilane (APS). Iron nano-particles were synthesized by thermal decomposition of iron pentacarbonyl-oleic acid complex. Subsequently, APS modification was done using the iron nano-particles synthesized. Agglomeration of the iron nano-particles during the CNT growth process was effectively prevented by the surface modification of nano-particles with the APS. APS plays as a linker material between Fe nano-particles and $SiO_2$ substrate resulting in blocking the migration of nano-particles. APS also formed siliceous material covering the iron nano-particles that prevented the agglomeration of iron nano-particles at the early stages of the CNT growth. Therefore we could obtain the diameter controlled CNTs by blocking agglomeration of the iron nano-particles.

화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조 (Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation)

  • 이정한;김성덕;김진천;최철진;이찬규
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

화학적 기상 응축(CVC)법을 이용한 철-몰리브덴합금 나노 입자와 와이어의 제조 (Fabrication of Iron-Molybdenum Alloyed Nanoparticle and Nanowire using Chemical Vapor Condensation(CVC))

  • 하종근;조권구;김기원;류광선
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.223-229
    • /
    • 2010
  • Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl($Fe(CO)_5$) and Molybdenum hexacarbonyl($Mo(CO)_6$). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.