• Title/Summary/Keyword: Iron chloride(II, III)

Search Result 16, Processing Time 0.018 seconds

Purification and Characterization of a Fibrinolytic Enzyme from Snake Venom of Macrovipera lebetina turanica

  • Kwon, Ki-Rok;Park, Do-Il;Lee, Seung-Bae;Choi, Suk-Ho
    • Journal of Pharmacopuncture
    • /
    • v.14 no.2
    • /
    • pp.5-14
    • /
    • 2011
  • Objectives: Fibrinolytic enzyme preparations were isolated from the snake venom of Macrovipera lebetica turanica in this study. Methods: The purity of the preparations was determined using SDS-PAGE and the enzymic characteristics of the purified fibrinolytic enzyme were determined. Results: 1. All of the two preparations with fibrinolytic activity obtained from the snake venom of M. l. turanicat contained the major polypeptide with the molecular weight of 27,500. One of the preparation showed purified fibrinolytic enzyme. 2. The purified fibrinolytic enzyme hydrolyzed ${\alpha}$-chain of fibrinogen faster than ${\beta}$-chain but not ${\gamma}$-chain. 3. The fibrinolytic activity was inhibited completely by EDTA, EGTA, 1,10-phenanthroline, and dithiothreitol. 4. The fibrinolytic activity was inhibited completely by calcium chloride, iron(III) chloride, mercuric chloride, and cobalt (II) chloride. 5. The fibrinolysis zone formed after addition of zinc sulfate was smaller but clearer than the control. Conclusions: These results suggested that the fibrinolytic enzyme purifed from the snake venom of M. l turanica was a metalloprotease containing dithiol group.

Kinetic Studies on the Reaction of Iron (Ⅲ) with D-penicillamine in Acidic Solution$^1$

  • Hyun-Jae Park;Yung-Hee Oh Kim;Jung-Ae Shim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.444-449
    • /
    • 1993
  • Anaerobic oxidation of D-penicillamine by Fe(III) in acidic solution has been studied kinetically by the use of stopped-flow system. The reaction is biphasic with a rapid complexation of 1: 1 complex, $Fepen^+$ (pen= D-penicillamine dianion) which is then internally reduced to Fe(II) and disulfide. Rates of both the complexation and the redox process are pH dependent and also are affected by the presence of chloride ion. Different from the reaction of Cu(II) with D-penicillamine, partially oxidized mixed-valence complex is not formed even transiently in this reaction.

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy

  • Barbosa, A.L.;Jimenez, C.;Mosquera, J.A.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.

Recovery of Gallium from Steelmaking Dust (제강더스트로부터 갈륨의 회수)

  • 양종규;이성식;김종화;황영길
    • Resources Recycling
    • /
    • v.2 no.4
    • /
    • pp.27-32
    • /
    • 1993
  • A process has been studied to recover gallium from steelmaking dust which had several hundreds ppm of gallium. Aqueous solution containing 38 mg/l gallium was obtained by leaching of dust with 2.25 mol/l sulfuric acid. The leach liquor contained iron and zinc about 1,000 times greater than gallium. Gallium was then concentrated by ion exchanger of chelating resin with functional group of amino carboxylic acid after reduction of ferric ion to ferrous ion and pH adjustment. Gallium was concentrated to be 13 g/l in the resulting eluate by double ion exchanges. The liquor was further treated to remove impurities by solvent extraction technique empolying TOMAC as extractant. The galluim with 99% purity was finally obtainable.

  • PDF

The Study on the Separation of the Subsidiary Elements in Iron and Steel by Using Ion Exchangers (II). The Separation of Anions (이온 교환수지에 의한 철 및 강의 분석에 관한 연구 (제2보). 음이온 성분의 분리)

  • Byoung-Cho Lee;Myon-Yong Park;Kee-Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.428-433
    • /
    • 1973
  • The quantitative separations of a mixture containing equal amount of each anion such as Si(IV), As(V), P(V), S(VI), W(VI) and Cr(VI) are carried out by the elution through 20${\times}3.14cm^2$ column of anion exchange resin, Dowex 1${\times}$8. The eluents are a mixture of 0.07 M hydrochloric acid and 0.03 M sodium chloride (pH = 1.30) for Si(IV), As(V) and P(V) species, a mixture of 0.6 M sodium chloride and 0.3 M sodium hydroxide for S(VI), W(VI) and Cr(VI) species, and 0.1 N sodium sulfite (pH = 3.48) for P(V) and As(V) species. The subsidiary anions in a standard mixture such as Si(IV), As(V), S(VI), P(V) and W(VI) are separated together from large amount of Fe(III) by the elution through 30cm${\times}3.14cm^2$ column of the resin, Dowex${\times}$50w${\times}$12, using a mixture of 0.1 M sodium nitrate and 2 percent dimethylsulfoxide aqueous solution as an eluent. Si(IV), As(V), S(VI), P(V) and W(VI) eluted together are separated quantitatively under the same conditions as in the separations of the anion mixture. By the conditions obtained in the separations of the standard mixture, Fe(III) and all of the subsidiary anions in steel are quantitatively separated.

  • PDF

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF