• Title/Summary/Keyword: Iris data

Search Result 193, Processing Time 0.034 seconds

Design and implementation of dual-mode narrow-band waveguide channel filter using measured iris transmission loss data (Iris 전송손실 측정값을 이용한 이중모드 협대역 도파관 채널여파기의 설계 및 제작)

  • 정근욱;이재현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.19-28
    • /
    • 1995
  • In this paper, measured iris transmission loss data and simulated data by using 3-dimension full-wave analysis S/W are presented and compared with Marcuvitz's theory. And by using measured iris data, dual-mode narrow-band channel filters can be successfully implemented. This paper shows that there is severe difference between the transmission loss of iris calculated by using Marcuvitz's equation to calculate iris dimension, if the length of slot iris is longer than .lambda./.pi., and in the long urn the response of channel filter is distorted. Experimental result shows that the characteristic response of implemented channel filter by using the iris transmission loss graph presented here matches well the design specfications. In conclusion, iris transmission loss measurement method will be very useful to design channel filter.

  • PDF

Invariant Iris Code extraction for generating cryptographic key based on Fuzzy Vault (퍼지볼트 기반의 암호 키 생성을 위한 불변 홍채코드 추출)

  • Lee, Youn-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.321-322
    • /
    • 2006
  • In this paper, we propose a method that extracts invariant iris codes from user's iris pattern in order to apply these codes to a new cryptographic construct called fuzzy vault. The fuzzy vault, proposed by Juels and Sudan, has been used to manage cryptographic key safely by merging with biometrics. Generally, iris data has intra-variation of iris pattern according to sensed environmental changes, but cryptography requires correctness. Therefore, to combine iris data and fuzzy vault, we have to extract an invariant iris feature from iris pattern. In this paper, we obtain invariant iris codes by clustering iris features extracted by independent component analysis(ICA) transform. From experimental results, we proved that the iris codes extracted by our method are invariant to sensed environmental changes and can be used in fuzzy vault.

  • PDF

A Fake-Iris Detection Method using SVDD (단일 클래스 분류기를 이용한 위조 홍채 검출 방법)

  • Lee, Sung-Joo;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.287-288
    • /
    • 2007
  • In this paper, we propose a fake-iris detection method. In order to detect the fake-iris, we measure physiological features which are the reflectance ratio of the iris to the sclera at 750 nm and that at 850nm. In order to classify live and fake iris features, we use support vector data description (SVDD). From our experimental results, it is clear that our fake-iris detection method achieves high performance when distinguishing between a live-iris and a fake-iris.

  • PDF

Analysis of Genetic Relationship of Native Iris species Plants using RAPD (RAPD를 이용한 자생 Iris속 식물의 유전적 유연관계 분석)

  • Ahn Young-Hee
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.265-269
    • /
    • 2005
  • This study was carried out to provide the basic data for an identifying system for Iris species distributed in Korean market from complete analysing of genetic relationship between three native Iris species and one cultivar bred from the native Iris plant. RAPD analysis of genetic relationship among 4 Irises was possible. According to the RAPD analysis, they were divided into two groups. Among 4 Irises used in this study, Iris laevigata 'Veriegata', Iris laevigata and Iris setosa were classified into the same group since they had many similarities even though the habitat of Iris laevigata in Korean peninsular is restricted mainly in the south and Iris setosa is naturally inhabited in the northern part of Kangwondo. The value for the dissimilarity index of Iris laevigata and Iris laevigata 'Veriegata' was 6.757. The value for the dissimilarity index of Iris laevigata and Iris dichotoma was 95.000, so that they were genetically the farthest among them since the genetic relationship between two species are separated far if the value of the dissimilarity index is close to 100.

A Novel Eyelashes Removal Method for Improving Iris Data Preservation Rate (홍채영역에서의 홍채정보 보존율 향상을 위한 새로운 속눈썹 제거 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.429-440
    • /
    • 2014
  • The iris recognition is a biometrics technology to extract and code an unique iris feature from human eye image. Also, it includes the technology to compare with other's various iris stored in the system. On the other hand, eyelashes in iris image are a external factor to affect to recognition rate of iris. If eyelashes are not removed exactly from iris area, there are two false recognitions that recognize eyelashes to iris features or iris features to eyelashes. Eventually, these false recognitions bring out a lot of loss in iris informations. In this paper, in order to solve that problems, we removed eyelashes by gabor filter that using for analysis of frequency feature and improve preservation rate of iris informations. By novel method to extract various features on iris area using angle, frequency, and gaussian parameter on gabor filter that is one of the filters for analysing frequency feature for an image, we could remove accurately eyelashes with various lengths and shapes. As the result, proposed method represents that improve about 4% than previous methods using GMM or histogram analysis in iris preservation rate.

Deep learning framework for bovine iris segmentation

  • Heemoon Yoon;Mira Park;Hayoung Lee;Jisoon An;Taehyun Lee;Sang-Hee Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • Iris segmentation is an initial step for identifying the biometrics of animals when establishing a traceability system for livestock. In this study, we propose a deep learning framework for pixel-wise segmentation of bovine iris with a minimized use of annotation labels utilizing the BovineAAEyes80 public dataset. The proposed image segmentation framework encompasses data collection, data preparation, data augmentation selection, training of 15 deep neural network (DNN) models with varying encoder backbones and segmentation decoder DNNs, and evaluation of the models using multiple metrics and graphical segmentation results. This framework aims to provide comprehensive and in-depth information on each model's training and testing outcomes to optimize bovine iris segmentation performance. In the experiment, U-Net with a VGG16 backbone was identified as the optimal combination of encoder and decoder models for the dataset, achieving an accuracy and dice coefficient score of 99.50% and 98.35%, respectively. Notably, the selected model accurately segmented even corrupted images without proper annotation data. This study contributes to the advancement of iris segmentation and the establishment of a reliable DNN training framework.

Wavelet-based Feature Extraction Algorithm for an Iris Recognition System

  • Panganiban, Ayra;Linsangan, Noel;Caluyo, Felicito
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.425-434
    • /
    • 2011
  • The success of iris recognition depends mainly on two factors: image acquisition and an iris recognition algorithm. In this study, we present a system that considers both factors and focuses on the latter. The proposed algorithm aims to find out the most efficient wavelet family and its coefficients for encoding the iris template of the experiment samples. The algorithm implemented in software performs segmentation, normalization, feature encoding, data storage, and matching. By using the Haar and Biorthogonal wavelet families at various levels feature encoding is performed by decomposing the normalized iris image. The vertical coefficient is encoded into the iris template and is stored in the database. The performance of the system is evaluated by using the number of degrees of freedom, False Reject Rate (FRR), False Accept Rate (FAR), and Equal Error Rate (EER) and the metrics show that the proposed algorithm can be employed for an iris recognition system.

Iris Recognition Using Ridgelets

  • Birgale, Lenina;Kokare, Manesh
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.445-458
    • /
    • 2012
  • Image feature extraction is one of the basic works for biometric analysis. This paper presents the novel concept of application of ridgelets for iris recognition systems. Ridgelet transforms are the combination of Radon transforms and Wavelet transforms. They are suitable for extracting the abundantly present textural data that is in an iris. The technique proposed here uses the ridgelets to form an iris signature and to represent the iris. This paper contributes towards creating an improved iris recognition system. There is a reduction in the feature vector size, which is 1X4 in size. The False Acceptance Rate (FAR) and False Rejection Rate (FRR) were also reduced and the accuracy increased. The proposed method also avoids the iris normalization process that is traditionally used in iris recognition systems. Experimental results indicate that the proposed method achieves an accuracy of 99.82%, 0.1309% FAR, and 0.0434% FRR.

An Iris Detection Algorithm for Disease Prediction based Iridology (홍채학기반이 질병예측을 위한 홍채인식 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • Iris diagnosis is an alternative medicine to diagnose the disease of the patient by using different of the iris pattern, color and other characteristics. This paper proposed a disease prediction algorithm that using the iris regions that analyze iris change to using differential image of iris image. this method utilize as patient's health examination according to iris change. Because most of previous studies only find a sign pattern in a iris image, it's not enough to be used for a iris diagnosis system. We're developed an iris diagnosis system based on a iris images processing approach, It's presents the extraction algorithms of 8 major iris signs and correction manually for improving the accuracy of analysis. As a result, PNSR of applied edge detection image is about 132, and pattern matching area recognition presented practical use possibility by automatic diagnostic that presume situation of human body by iris about 91%.

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.