• Title/Summary/Keyword: Iris code

Search Result 29, Processing Time 0.024 seconds

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur Jung-Youn;Truong Le Xuan;Lee Sang-Kyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • Iris recognition system is the one of the most reliable biometries recognition system. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transformed into polar coordinates. After performing three times Wavelet transformation, normalization was done using a sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compared pairs of two adjacent pixels. The binary code of the iris is transmitted to the server by the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the database. The process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.

Extraction of Iris Codes for Personal Identification Using an Iris Image (홍채를 이용한 생체인식 코드 추출)

  • Yang, Woo Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper, we introduce a new technology to extract the unique features from an iris image, which uses scale-space filtering. Resulting iris code can be used to develop a system for rapid and automatic human identification with high reliability and confidence levels. First, an iris part is separated from the whole image and the radius and center of the iris are evaluated. Next, the regions that have a high possibility of being noise are discriminated and the features presented in the highly detailed pattern are then extracted. In order to conserve the original signal while minimizing the effect of noise, scale-space filtering is applied. Experiments are performed using a set of 272 iris images taken from 18 persons. Test results show that the iris feature patterns of different persons are clearly discriminated from those of the same person.

  • PDF

Design of the Finite Schematic Eye with GRIN Crystalline Lens Considering Iris Eccentricity (홍채 편심을 고려한 GRIN 수정체를 갖는 정밀모형안 설계)

  • Kim, Bong-Hwan;Han, Sun-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.61-64
    • /
    • 2011
  • Purpose: The purpose of this study was to design the finite model eye with GRIN lens similar to actual eye, which considered the effect of iris eccentricity on eyes. Methods: By using the finite model eye with Radial GRIN and Spherical GRIN, which were designed previously, the location of iris was eccentrically located by 0.5 mm in the direction of nose to show the same eye as actual one. For ray trace and design, Code V program of Optical Research Associates (ORA) was adopted. Results: Designed model eye was compared to actual eye depending on iris eccentricity and the model eye which showed reduced value was corrected according to actual eye to design the finite model eye. Conclusions: Ocular optical systems considered the point that iris was a rotational asymmetry and designed the finite model eye with GRIN lens, which was similar to actual eye, by considering the effect of iris eccentricity on eye.

A Novel Eyelashes Removal Method for Improving Iris Data Preservation Rate (홍채영역에서의 홍채정보 보존율 향상을 위한 새로운 속눈썹 제거 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.429-440
    • /
    • 2014
  • The iris recognition is a biometrics technology to extract and code an unique iris feature from human eye image. Also, it includes the technology to compare with other's various iris stored in the system. On the other hand, eyelashes in iris image are a external factor to affect to recognition rate of iris. If eyelashes are not removed exactly from iris area, there are two false recognitions that recognize eyelashes to iris features or iris features to eyelashes. Eventually, these false recognitions bring out a lot of loss in iris informations. In this paper, in order to solve that problems, we removed eyelashes by gabor filter that using for analysis of frequency feature and improve preservation rate of iris informations. By novel method to extract various features on iris area using angle, frequency, and gaussian parameter on gabor filter that is one of the filters for analysing frequency feature for an image, we could remove accurately eyelashes with various lengths and shapes. As the result, proposed method represents that improve about 4% than previous methods using GMM or histogram analysis in iris preservation rate.

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur, Jung-Youn;Truong, Le Xuan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.553-559
    • /
    • 2004
  • In todays security industry, personal identification is also based on biometric. Biometric identification is performed basing on the measurement and comparison of physiological and behavioral characteristics, Biometric for recognition includes voice dynamics, signature dynamics, hand geometry, fingerprint, iris, etc. Iris can serve as a kind of living passport or living password. Iris recognition system is the one of the most reliable biometrics recognition system. This is applied to client/server system such as the electronic commerce and electronic banking from stand-alone system or networks, ATMs, etc. A new algorithm using nonlinear function in recognition process is proposed in this paper. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transform into polar coordinates. After performing three times Wavelet transformation, normalization was done using sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compare pairs of two adjacent pixels. The binary code of the iris is transmitted to the by server. the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the University database. Process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.

  • PDF

A Study on Eyelid and Eyelash Localization for Iris Recognition (홍채 인식에서의 눈꺼풀 및 눈썹 추출 연구)

  • Kang, Byung-Joon;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.898-905
    • /
    • 2005
  • Iris recognition Is that identifies a user based on the unique iris muscle patterns which has the functionalities of dilating or contracting pupil region. Because it is reported that iris recognition is more accurate than other biometries such as face, fingerprint, vein and speaker recognition, iris recognition is widely used in the high security application domain. However, if unnecessary information such as eyelid and eyelash is included in iris region, the error for iris recognition is increased, consequently. In detail, if iris region is used to generate iris code including eyelash and eyelid, the iris codes are also changed and the error rate is increased. To overcome such problem, we propose the method of detecting eyelid by using pyramid searching parabolic deformable template. In addition, we detect the eyelash by using the eyelash mask. Experimental results show that EER(Equal Error Rate) for iris recognition using the proposed algorithm is lessened as much as $0.3\%$ compared to that not using it.

  • PDF

Feature Extraction for Iris Recognition Using Scale-Space Filtering (스케일 스페이스 필터링을 이용한 홍채 특징 추출)

  • Hong, Jin-Il;Kim, Dong-Min;Yang, Woo-S.
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.169-177
    • /
    • 2002
  • In this paper, we introduce a new technology to extract the unique features from an iris image, which uses scale-space filtering. Resulting iris code can be used to develop a system for rapid and automatic identification of persons, with high reliability and confidence levels. First, an iris part is separated from the whole image. Then the radius and center of the iris are obtained. Once the regions that have a high possibility of being noise are discriminated, the features presented in the highly detailed pattern is then extracted from the iris image. Scale-space filtering technique is applied for feature extraction.

  • PDF

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

Biometric Identification: Iris Recognition, Biometric Cryptography

  • Rawan Alrasheddi;Zainab Alawami;Maryam Hazazi;Reema Abu Alsaud;Ruba Alobaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.41-46
    • /
    • 2023
  • Biometrics is an application of biometric authentication and identification techniques that are used for security. Where people can be identified by physical or behavioral features such as iris, fingerprints, or even voice. Biometrics with cryptography can be used in a variety of applications such as issuing, generating, or associating biometric keys. Biometric identification and cryptography are used in many institutions and high-security systems due to the difficulty of tampering or forgery by hackers. In this paper, literature reviews on biometric identification and cryptography are presented and discussed. In addition to a comparison of techniques in the literature reviews, identifying its strengths and weaknesses, and providing an initial proposal for biometrics and cryptography.

A Study on Iris Image Restoration Using Focus Value of Iris Image (영상의 초점값을 이용한 홍채 영상 복원 연구)

  • Kang, Byung-Jun;Park, Kang-Ryoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.781-784
    • /
    • 2005
  • 홍채 인식은 동공과 흰자위 사이에 존재하는 도넛 모양의 홍채 패턴(Iris pattern)을 이용하여 자신인지 타인인지 판별하는 매우 신뢰도가 높은 생체인식기술 가운데 하나이다. 홍채 인식은 홍채 영상의 홍채 패턴으로부터 홍채 코드(Iris code)를 추출하여 인식하기 때문에 좋은 질의 홍채영상을 취득하는 것은 정확한 홍채 인식을 위해서 매우 중요하다. 이러한 홍채 영상의 질을 결정하는 중요한 요소 가운데 하나가 초점(focus)이다. 초점이 맞지 않아 흐려진(blurring) 영상은 홍채 인식에서 자신임에도 불구하고 타인으로 인식하는 FRR(false reject error)를 증가시킨다. 홍채 인식 시스템의 카메라는 고정 초점 방식과 가변 초점 방식이 있다. 고정 초점 방식은 초점렌즈가 고정되어 있어서 초점이 맞지 않는 영상을 취득할 경우 사용자에게 다시 요구하여 입력받도록 한다. 이는 사용자에게 불편을 초래한다. 가변 초점 방식은 사용자와의 거리를 측정하여 초점렌즈를 움직여서 초점이 잘 맞은 선명한 영상을 얻는다. 하지만, 초점렌즈를 움직이기 위해서 사용자와의 거리를 측정하는 센서와 초점렌즈를 움직이는 모터등과 같은 부가 장비가 필요하다. 따라서 카메라의 부피가 커지고, 가격이 상승하게 되는 문제점이 있다. 그리므로 본 논문은 고정 초점 카메라를 사용하여 부가 장비 없이 홍채 영상 복원 알고리즘을 사용하여 소프트웨어적으로 초점이 맞지 않아 흐려진 영상을 처리하는 방법을 제안한다. 본 논문은 초점값을 이용하여 열화(degradation)의 정도를 판단하였으며, 초점값(focus value)에 따라 점확산함수(point spread function)를 설계하여 홍채영상을 복원하였다.

  • PDF