• Title/Summary/Keyword: Iribarren number

Search Result 3, Processing Time 0.015 seconds

Breakwater Design against Flood and Typhoon (풍수해에 대비한 방파제 설계기법)

  • 김인호;유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.103-107
    • /
    • 2004
  • Empirical equation has been developed by employing the new non-dimensional physical number 'wave action slope' for the estimation of breakwater armor weight. Van der Meer(1987) introduced Iribarren number for the same purpose, but his equation shows very different trend of distribution with the condition of Iribarren number. On the other hand the equation related with wave action slope keeps the same trend of distribution over the whole region. When the parameter is related to the Iribarren number, the equation of wave action slope has a very high accuracy.

Wave Breaking in Shallow Waters (천해역에서의 쇄파)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 1990
  • A local Iribarren number is suggested for the universal use of breaker type classification, which relates the bed slope to the wave steepness, both being given from the breaking point. The existing Iribarren number uses the wave length at an offshore point, while the local Iribarren number uses the wave length at the breaking point so that it can imply any influences due to current interaction and diffraction. The modified form of Miche's breaking criterion includes 고 breaking parameter which may be related to the local Iribarren number. Using the modifiedform of Miche's criterion with the local Iribarren number, the inclusion of Doppler effect seems to describe well the wave breaking mechanism in a current-interacted flow on a sloping beach without any additional effects implemented.

  • PDF

Empirical Equation of Wave Run-up Height (도파고 경험식)

  • Yoo Dong Hoon;Kim In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.233-240
    • /
    • 2004
  • For the development of empirical equation of run-up height, a new surf parameter called' wave action slope' $S_x$ is introduced. Approximate equation has been produced for each band of water depth for the computation of wave run-up height using the laboratory graph of Saville(1958). On the other hand using the laboratory data of Ahrens(1988) and Mase(1989), empirical equations of run-up height have been developed for the general application with considering roughness effect covering a wide range of water depth and wall slope. When Mase tried to relate the run-up height to the Iribarren number, nonlinear relation has been obtained and hence the empirical equation has a power law. But when the wave action slope is adopted as a major factor for the estimation of run-up height the empirical equation shows a linear relationship with very good correlation for the wide range of water depth and wall slope.