• Title/Summary/Keyword: Ir-complexes

Search Result 324, Processing Time 0.02 seconds

Synthesis and Photoluminescence Properties of Heteroleptic 9-Arylated Carbazole Iridium(III) Complexes (9-Arylated Carbazole을 주리간드로 사용하는 Heteroleptic Iridium(III) 착물의 합성과 분광학적 특성)

  • Oh, Se Hwan;Yum, Eul Kgun;Kim, Younghoon;Im, Yung-Jae;Heo, Jungseok;Kim, Yeong-Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.180-189
    • /
    • 2021
  • N-Heteroaryl carbazoles were synthesized with thermal heating in the presence of Cu(I) catalyst and used as main ligands for the preparation of heteroleptic Ir(III) complexes. In these Ir(III) complexes, 6-membered ring structures of Ir-ligand chelation were found by single crystal X-ray diffraction. The blue shift of photoluminescence for Ir(III) complexes was observed in the case of the strong bond formation between Ir and ancillary ligands. It also has been clearly shown that the higher electron density of heteroaryl aromatic ring influenced shorter maximum photoluminescence wavelength (λmax) of Ir(III) complexes. Since the new Ir(III) complexes showed good phosphorescent emission, they could be potentially used as OLED materials in the emission Layer.

Ab initio Studies on d8-MCI(PH3)2(C2H2), M=Rh and Ir, Complexes

  • Kang, Sung-Kwon;Song, Jin-Soo;Moon, Jung-Hyun;Yun, Sock-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • The geometries and energies of the isomers in alkyne complexes MCl(PH3)2(η2-C2H2), M=Rh and Ir, are theoretically investigated using ab initio methods at the Hartree-Fock and up to MP4 level of theory and relativistic effective core potentials for Rh and Ir metals. The optimized structures of Rh complexes, 1-3 at MP2/ECP1 level are in good agreement with the related experimental data. The binding energies of C2H2 to d8-metal fragments are computed to be ∼55 kcal/mol. The vinylidene complexes for Rh and Ir metals are calculated to be much lower in energy than the alkyne complexes. The alkyne-vinylidene rearrangement is possible to proceed exothermically through the intermediate hydrido-alkynyl complexes, 2 or 9. Detailed comparison is given about the geometries and relative energies on Rh and Ir isomers at the various level ab initio calculations with orbital analysis.

Improvement of Efficiency Varying Ratio in Hybrid White OLED (도핑 비율에 따른 하이브리드 백색 OLED의 효율 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.571-575
    • /
    • 2014
  • We synthesized new materials of $Zn(HPB)_2$ and Ir-complexes as blue or red emitting material. We fabricated white Organic Light Emitting Diodes (OLED) by using $Zn(HPB)_2$ for the blue emitting layer, Ir-complexes for the red emitting layer and $Alq_3$ for the green emitting layer. We fabricated white OLED by using double emitting layers of $Zn(HPB)_2$:Ir-complexes and $Alq_3$. The doping rate of Ir-complexes was varied, such as 0.2%, 0.4%, 0.6%, and 0.8%, respectively. When the doping rate of $Zn(HPB)_2$:Ir-complexes was 0.6%, white emission was achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission was (0.322, 0.312).

Synthesis and Electrochemical Study of the Ir(III) Complexes Containing the Diphenyl-quinoline, -Quinoxaline and Pyrazolonate Ligands

  • Lee, Hyun-Shin;Ha, Yun-Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1007-1010
    • /
    • 2011
  • $Ir(dpq/dpqx)_2$(przl-R) complexes were prepared and their electrochemical properties were investigated, where dpq, dpqx and przl-R represent 2,3-diphenylquinoline, 2,3-diphenylquinoxaline and N-phenyl-R-pyrazolonate derivatives, respectively. The iridium complexes containing dpq and dpqx as main ligands were reported to show red phosphorescence, and involvement of a pyrazolonate ancillary ligand in the iridium complexes led to high luminous efficiency for organic light-emitting diodes. In this study, we synthesized red phosphorescent iridium complexes containing a new pyrazolonate ancillary ligand and investigated the HOMOs, LUMOs and resulting electrochemical gaps of $Ir(dpq/dpqx)_2$(przl-R) by cyclic voltammetry. The emission wavelengths of the complexes at 600 - 640 nm were consistent with the gaps of 1.95 - 2.03 eV measured from reduction and oxidation potentials of the complexes.

Iridium(Ⅲ) Complexes of η$^6$-Arenes with Olefinic and Cyclopropyl Substituents: Facile Conversion to η ³-henylallyl Complexes

  • 정현목;주광석;진종식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.402-405
    • /
    • 1997
  • Olefinic and cyclopropyl group substituted arenes (C6H5Y) react with [Cp*Ir(CH3COCH3)3]A2 (A=ClO4-, OTf-) to give η6-arene complexes, [Cp*Ir(η6-C6H5Y)]2+ (1a: Y=-CH=CH2 (a),-CH=CHCH3 (b),-C(CH3)=CH2 (c),-CH-CH2-CH2 (d)). Complex 1b-1d are readily converted into η3-allyl complexes, [Cp*(CH3CN)Ir(η3-CH(C6H5)CHCH2)]+ (2a) and [Cp*(CH3CN)Ir(η3-CH2(C6H5)CH2)]+ (2b), in the presence of Na2CO3 in CH3CN. The η6-styrene complex, 1a reacts with NaBH4 to give η5-cyclohexadienyl complex, [Cp*Ir(η5-C6H6-CH=CH2)]+ (3), while with H2 it gives η6-ethylbenzene complex [Cp*Ir(η6-C6H5CH2CH3)]2+ (4). Complex 1a and 1c react with HCl to give [Cp*Ir(η6-C6H5CH2CH2Cl)]2+ (5a) and [Cp*Ir(η6-C6H5CH(CH3)CH2Cl]2+ (5b), respectively.

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

Preparation and Characterization of Dinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (M = Rh, Ir; E = 1,4-Dicyanobenzene and 1,4-Dicyano-2-butene)

  • Moonsik Kim;JaeKyun Chin;Jaejung Ko
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.556-559
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M= Rh, Ir) reacts rapidly with 1,4-dicyanobenzene or 1,4-dicyano-2-butene to yield dinuclear metal complexes $[(PPh_3)_2(CO)M({\mu}-dicyanobenzene)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M = Rh; II: M = Ir) or $[(PPh_3)_2(CO)M({\mu}-dicyano-2-benzene)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (III: M = Rh; IV: M = Ir), respectively. Compounds I, II, III, and IV were characterized by $^1H$-NMR, $^{31}P$-NMR, and infrared spectrum. Dichloromethane solution of II and IV reacts with $H_2\;and\;I_2$ to yield oxidative addition complexes $[(PPh_3)_2(CO)IrX_2({\mu}-E)X_2Ir(CO)(PPh_3)_2](SO_3CF_3)_2$ (V; E = 1,4-dicyanobenzene, $X_2$ = $H_2$; VI : E = 1,4-dicyano-2-butene, $X_2$ = $H_2$; VII; E = 1,4-dicyanobenzene, $X_2$ = $I_2$). All metal complexes are bridged by the cyanide groups. Compounds Ⅴ, Ⅵ, and Ⅶ are characterized by conventional methods.

Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand

  • Yun, Seong-Jae;Song, Young-Kwang;Kim, Minji;Shin, Jaemin;Jin, Sung-Ho;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3199-3204
    • /
    • 2014
  • Two novel phosphorescent heteroleptic cationic Ir(III) complexes, Ir(bt)2(dmpe) (Ir1) and Ir (bt)2(dppe) (Ir2), where bt is 2-phenylbenzothiazole, dmpe is 1,2-bis(dimethylphosphino)ethane, and dppe is 1,2-bis(diphenyl-phosphino) ethane, were designed and synthesized. Their photophysical and electrochemical properties and the X-ray structure of the Ir1 complex were investigated. The prepared Ir(III) complexes exhibited blue-green emissions at 503-538 nm with vibronic fine structures in dichloromethane solution and PMMA film, implying that the lowest excited states are dominated by ligand-based $^3{\pi}-{\pi}^*$ transitions. The ${\pi}$-acceptor ability of the diphosphine ancillary ligand leads to blue-shift emission. The room temperature photoluminescent quantum yields (PLQYs) of Ir1 and Ir2 were 52% and 45%, respectively, in dichloromethane solution. These high PLQYs resulted from steric hindrances by the bulky cationic iridium complexes. The crystal structure of Ir1 was determined by X-ray crystallography, which revealed that central iridium adopted a distorted octahedral structure coordinated with two bt ligands (N^C) and one dmpe ligand (P^P) showing cis C-C and trans N-N dispositions. The bent nature of the dmpe ligand resulted in a relatively wide bite angle of $83.83^{\circ}$ of P-Ir-P.

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

New Phosphorescent Cyclometalated Iridium(III) Complexes with Diphenyl-1,3-oxazolic and 2-(3-Thienyl)pyridine Ligands for LED Applications

  • Kirsyuk, V. V.;Turgambaeva, A. E.;Shim, Jung-Jin;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.174-177
    • /
    • 2003
  • We report four new phosphorescent iridium(III} complexes with 2,4-diphenyl-1,3-oxazole [$Ir(24dpo)_3$], 2,5-diphenyl-1,3-oxazole [$Ir(25dpo)_3$], 2-(3-thienyl) pyridine [$Ir(3thpyh)_3$] and [Ir(3thpy)2(acac)]. Three of them demonstrate good photophysical properties to be used as dopants to organic polymer matrix or to be used "as is" without a host matrix to fabricate OLEDs. Green and yellow light emission was observed for the photoluminescence: 569/525, 549/498 nm and 557,604/533 (solid state/$CH_2Cl_2$ solution) for $Ir(24dpo)_3$, $Ir(3thpyh)_3$ and $Ir(3thpyh)_2$acac respectively. Room temperature luminescent lifetimes are 2.5 and 1.8 ${\mu}s$ and quantum efficiencies 37 and 53%for $Ir(24dpo)_3$ and $Ir(3thpyh)_3$. The complexes are stable in air and sublimable at low pressure without considerable decomposition. Comparison of physicochemical properties of the reported iridium(III) cyclometalated compounds with that known from literature is carried out.

  • PDF