• Title/Summary/Keyword: Ions

Search Result 7,100, Processing Time 0.032 seconds

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

Adsorption of U(VI), Mg(II), Ho(III) Ions on the 1-Aza-18-Crown-6-Styrene-DVB Resin (1-Aza-18-Crown-6-Styrene-DVB 수지에 의한 U(VI), Mg(II), Ho(III) 이온들의 흡착)

  • Kim, Hae-Jin;Kim, Sun-Hwa
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.49-56
    • /
    • 2007
  • The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of metal ions by 1-aza-18-crown-6-styrene-DVB(divinylbenzene) resin(resin) adsorbent were investigated. The metal ions were showed fast adsorption on the resins in over pH 3. The equilibrium time for adsorption of metallic ions was about two hours and the adsorption selectivity determined in methanol was in increasing order $UO_2^{2+}>Mg^{2+}>Ho^{3+}$ ions. The adsorption was in the order of 1%, 2% and 4% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Numerical Analysis of Impurity Transport Along Magnetic Field Lines in Tokamak Scrape-011 Layer

  • Chung, Tae-Kyun;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 1998
  • Transport of carbon and boron impurity ions parallel to magnetic field lines in the tokamak SOL (scrape-off layer) is numerically investigated for a one-dimensional steady state. The spatial distributions of density and velocity of the impurity ions in a steady state are calculated by finite difference method for a single-fluid model. The calculated results show that among forces acting on SOL particles thermal force produced tv plasma temperature gradient is a principal force determining the feature of impurity distribution profiles in the tokamak edge. However, strong collisional friction forces appearing dominant in front of the diverter plate restrain impurity ion flows due to temperature gradients from moving toward the midplane. Consequently, the stagnation point develops in the impurity flow by these two forces near the diverter region, in which ion flows change their directions. Impurity ions turn out to be accumulated at the stagnation points, where peaked profiles of highly-ionized state ions are relatively predominant over those of low-ionized state ions.

  • PDF

Depth Distributions of $Bi^{+}$ Ions Implanted into Ni, Si and $SiO_2$, Films

  • Wang, Ke-Ming;Feng Chen;Wang, Xue-Lin;Zhang, Jian-Hua;Liu, Xiang-Dong
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.8-11
    • /
    • 2002
  • Ni, Si and $SiO_2$ films were implanted by 350 keV B $i_{+}$ ions at room temperature with fluences of 1$\times$10$^{16}$ and 2$\times$10$^{16}$ ions/c $m^2$ The depth distributions of implanted B $i^{+}$ ions in Ni, Si and $SiO_2$ films were by investigated by Rutherford backscattering. The results show that the depth distributions of implanted B $i^{+}$ ions into Ni, Si and $SiO_2$ films have obeyed nearly Gaussian distributions. The maximum difference between experimental and calculated values is less than 18 % for mean projected range. Experimental range straggling deviated significantly from calculated value. The possible reasons are discussed.sed.d.

  • PDF

Kinetics of the Formation of Metalloporphyrins and the Catalytic Effect of Lead Ions and Hydrogen Ions

  • Qi, Yong;Pan, Ji Gang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3313-3318
    • /
    • 2014
  • The reaction mechanism of Lead ions catalyzing complexation reactions between TIPP and metal ions was investigated by researching the kinetics of the formation of metalloporphyrins by UV/Vis-spectra, and verified by exploring the formation of metalloporphyrins catalyzed by acetic acid. Kinetics studies suggested that the fluctuations of reaction rate indicated the formation of metalloporphyrin was step-wise, including the pre-equilibrium step (the coordination of the pyrrolenine nitrogens to $Mn^+$) and the rate-controlling step (the deprotonation of the pyrrole proton). In the pre-equalization step, a sitting-atop (SAT) structure formed first with the complexation between larger radius of $Pb^{2+}$ and TIPP, changed the activation, then $Pb^{2+}$ left with the smaller radius of metal ions attacking from the back of the porphyrin ring center. In the rate-controlling step, two pyrrole protons dissociated to restore a stable structure. This was verified by adding acetic acid at different reaction times.

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

Breakthrough Characteristics for Lithium Ions Adsorption in Fixed-bed Column Packed with Activated Carbon by Modified with Nitric Acid (질산으로 개질한 활성탄을 충전한 고정층에서 리튬이온 흡착시의 파과특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1143-1149
    • /
    • 2014
  • The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.

Selective Analysis of Heavy Metal Ions Using Protein-based Biosensor (단백질 바이오센서를 이용한 중금속 이온의 선택적 측정)

  • 김균영;김지현;유영제
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.609-613
    • /
    • 2001
  • New protein-based biosensors using fluorescence for the detection heavy metal ions were developed. The detection range of heavy metal ions was between 10$\^$-3/ mM - 1 mM using casein and albumin as a transducer of biosensor, respectively. Casein showed better results for detecting heavy metal ions than albumin. Simple assay method was developed for the selective analysis of the two heavy metal ions by the fluorescence at wavelength of excitation and emission. This method was successfully applied to determining the concentrations Of Co$\^$2+/ and Fe$\^$3+/.

  • PDF

Formation of Metal Complex in a Poly(hydroxamic acid) Resin Bead

  • Lee, Taek-Seung;Jeon, Dong-Won;Kim, Jai-Kyeong;Hong, Sung-Il
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.135-139
    • /
    • 2001
  • Poly(hydroxamic acid) resin beads were prepared and complexed with various metal ions. We used IR spectroscopy to investigate the structure of metal complex. It proved that the products formed by introduction of metal ions gave stable and colored complex. It was found that the resin bead as synthesized would be a good column packing material for continuous extraction. Energy dispersive spectroscopy was use to study the distribution of metal ions in the resin matrix. It could be tentatively concluded that adsorption and diffusion of metal ions in the chelating resins mainly depended on the loading of the resin matrix which indicated interacting sites with metal ions.

  • PDF

Effect of Batch Melting Temperature and Raw Material on Iron Redox State in Sodium Silicate Glasses

  • Mirhadi, Bahman;Mehdikhani, Behzad
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.117-120
    • /
    • 2011
  • In this study, the redox state of iron in sodium silicate glasses was varied by changing the melting conditions, such as the melting temperature and particle size of iron oxide. The oxidation states of the iron ion were determined by wet chemical analysis and UV-Vis spectroscopy methods. Iron commonly exists as an equilibrium mixture of ferrous ions, $Fe^{2+}$, and ferric ions $Fe^{3+}$. In this study, sodium silicate glasses containing nanoparticles of iron oxide (0.5% mol) were prepared at various temperatures. Increase of temperature led to the transformation of ferric ions to ferrous ions, and the intensity of the ferrous peak in 1050 nm increased. Nanoparticle iron oxide caused fewer ferrous ions to be formed and the $\frac{Fe^{2+}}{Fe^{3+}}$ equilibrium ratio compared to that with micro-oxide iron powder was lower.