• Title/Summary/Keyword: Ionized water

Search Result 150, Processing Time 0.015 seconds

Study on the Characteristics of Livestock Wastewater Treatment by Ionized Gas (이온화가스에 의한 축산폐수 처리 특성에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • This paper was studied about the characteristics of treatment by ionized gas for livestock wastewater, aiming at the effects of ionized gas on organic matter, hydrophobic and hydrophilic organic matter in livestock wastewater when the new process of advanced oxidation process was applied for meeting the improved the quality of effluent. The organic matter within treated livestock wastewater by ionized gas was partially mineralized according to the time increasement. The $TCOD_{Mn}$ in the livestock wastewater was decreased from 840mg/L to 340mg/L when treated by ionized gas by the enhancement of time. We occupied the equations of $TCOD_{Cr}$, $SCOD_{Cr}$, $TCOD_{Mn}$ and $SCOD_{Mn}$ as to ionized gas treated time. As $TCOD_{Mn}$ increasing ionized gas treated time, the concentration did not meet the water quality, $COD_{Mn}$ 4Omg/L. So, for removing of the remaining organic matter in the efflent after ionized gas, following process is necessary. After treating the livestock wastewater by ionized gas, coagulation was considerable for organic matter removal up to regulation water quality. From UV scans of the treated livestock wastewater by ionized gas, the wastewater has low aromaticity and good colour.

Effects of cooling water treatment with ionized calcium on calcium content and quality of fresh chicken meat in poultry slaughtering process (도계과정 중 이온화칼슘 냉침이 닭고기 신선도 및 칼슘 함량에 미치는 영향)

  • Choi, D.H.;Park, B.S.;Jin, J.Y.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.575-586
    • /
    • 2016
  • An experiment was carried out to determine the effect of cooling water treatment with ionized calcium on calcium content, extending the shelf-life and quality of fresh chicken meat in poultry slaughtering process. The subjects were divided into four groups: control (0% without ionized calcium) and treatment groups (0.5, 0.7, 0.9% ionized calcium). The results indicated that the cooling water treatment with ionized calcium exhibited the bacterial counts of $10^5CFU/cm^2$ in surface of chicken meat, and maintained the quality of fresh chicken meat with extending the shelf-life above seven days when compared with that of control group. The results found that the cooling water treatment with ionized calcium could produce the calcium enrichment of chicken meat as nine times higher in calcium content of chicken meat when compared with that of control group. pH, water holding capacity, TBARS (MDA mg/kg) in chicken meat via the cooling water treatment with ionized calcium showed 6.4, above 50, below 0.10, respectively, with preventing the oxidation of unsaturated fatty acids. Lightness ($L^*$) as a chicken meat color, shear force indicated above 60, below $1.70kg/0.5inch^2$, respectively.

Study of Soluble Organic Matter of Livestock Wastewater Treated by Ionized Gas and Coagulation after Ionized Gas (이온화가스와 응집공정을 조합한 축산폐수의 처리시 용존 유기물의 특성에 관한 연구)

  • Lee, Eun-Ju;Chung, Paul-Gene;Kim, Min-Jeong;Hyun, Mi-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.708-713
    • /
    • 2004
  • This study was performed to investigate the variations of hydrophilic and hydrophobic organic matter fractions in soluble organic matter according to livestock wastewater treatment by ionized gas and coagulation effect to these fractions after ionized gas contact. As a result of experiment, because of ionized gas contact, particle in the surface of livestock wastewater was more smaller and the result was consisted of particle size analysis and the amount of small size was increased. Also, we confirmed that organic matters in livestock wastewater by ionized gas contact were removed. The relation equation between ionized gas contact time(X) and $TCOD_{cr}$(Y) was shown as yscale(y)=3.748-0.431* xscale(X). That between ionized gas contact time(X) and $TCOD_{cr}$(Y) was yscale(y)=3.283-0.463* xscale(X). As respects the HPL(hydrophilic matter)and HPO(hydrophobic matter) fractions of raw in livestock wastewater treatment plant, HPL fraction was 53.2% and HPO fraction was 46.8%. But, HPO fraction according to ionized gas treatment was increased at 30min and after that time, HPL fraction was increased. Also, when we performed coagulation process after ionized gas treatment of raw wastewater, the removal efficiency of organic matter was the highest at 30min of ionized gas treatment because of the variation of HPL and HPO fractions in organic matter by ionized gas. In coagulation process following after ionized gas process, HPO was removed more effective than HPL.

The Humic Acid Treatment Characteristics by Ionized Gas and Combination with Activated Carbon (이온화가스와 활성탄을 이용한 휴믹산 처리에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong;Cho, Sun-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Laboratory studies were carried out to find out the characteristics of humic acid treatment by activated carbon and ionized gas, In order to increase oxidation power of ionized gas for treating organic matter, we used granular activated carbon. By using $UV_{254}$, easy analysis method, we calculated humic acid concentration and $SCOD_{cr}$ concentration. For an initial concentration of humic acid, 10, 50 and 100ppm, the reaction rate constant by $UV_{254}$ was $8.98{\times}10^{-3}$/min, $5.62{\times}10^{-3}$/min and $4.8{\times}10^{-3}$/min respectively due to the same flow rate of ionized gas. When we added activated carbon to the ionized gas for humic acid treatment, the reaction rate constant increased in 4.13, 3.65 and 3.15 times. So, by using activated carbon in treating humic acid by ionized gas, oxidation power of organic matter by ionized gas was increased. The hydrophobic fraction constitutes 98% of organic matter for humic acid at the beginning. After the treatment using ionized gas for humic acid, the hydrophobic fraction decreased by 63~65% and the hydrophilic one increased by 35~37%. So, it was proved that the treatment increased the hydrophilic fraction in organic matter.

Development of new cleaning technology using ionized water by electrolysis (전기분해 이온수를 이용한 세정기술 개발)

  • 변문기;백희원;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.617-620
    • /
    • 1999
  • To reduce the consumption of chemicals and ultra pure water(UPW) in cleaning process used in device manufacturing, we proposed wet processes that use electrolytic ionized water(EIW), which is generated by electrolysis of a diluted electrolyte solution or UPW and systemically investicate the EIW\`s characteristics. EIW\`s pH values are increased in cathode chamber and decreased in anode chamber according to the electrolysis time and its varied ratio is reduced with time increasement. The variation of pH and ORP is increased accordin to the applied voltage until critical voltage. But more than that voltage, the variation is decreased because of ion\`s scattering effect. When electrolyte is added, the effects of electrolysis is increased because electrolyte acts as catalyst. But when the density of electrolyte is increased more than critical value, ion\`s flowage is obstructed and the effects of electrolysis is decreased.

  • PDF

A Study on the Drag Reduction Effect and Heat Transfer Enhancement of Non ionized Surfactant and Water Mixture in a Circular Pipe Flow (비이온계 계면활성제 첨가수에 대한 관내 유동저항 감소 및 열전달 촉진에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.552-557
    • /
    • 2007
  • This paper has dealt with the effect of non ionized surfactant and water mixture on drag reduction and heat transfer enhancement in a circular pipe flow with experimentally. The test section was consisted of stainless steel pipe with inside diameter of 16mm. The wire coil was used to increase heat transfer in a pipe and the on ionized surfactant(Oleyl Dihydroxyethyl Amino Oxide, ODEAO) was used to reduce the drag force of water mixture with surfactant. The main parameters of this experiment were diameter and pitch of wire coil and the ratio of test section length and horizontal wire coil length. In this experiment, the acquired results were 1) Drag reduction effect existed in this ODEAO-water mixture, 2) Friction factor and heat transfer were increased with insertion the heat transfer enhancement coil, 3) With increasing of pitch ratio, heat transfer was decreased, and 4) Heat transfer was decreased by the decreasing of inserting coil diameter.

Effects of ionized calcium on microbial cross-contamination in surface of carcass via slaughter process of chickens (이온화칼슘이 도계과정 중 도체표면의 미생물 교차오염에 미치는 영향)

  • Park, B.S.;Jin, J.Y.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.813-823
    • /
    • 2016
  • The purpose of this study was to investigate the effects of ionized calcium treatment on total bacterial cross-contamination of chicken carcass surface in the slaughtering process. The growth of Escherichia coli was strongly inhibited in a medium prepared by using a 0.5% ionized calcium solution. The total bacterial cross-contamination of chicken carcass surface and the scalding water was significantly increased as the number of scalding was increased (p<0.05). The total bacterial cross-contamination of chicken carcass surface reached a plateau without a further increase as scalding was performed consecutively for 10 or more times. The total bacterial cross-contamination of the scalding water was significantly increased as the number of scalding was increased (p<0.05). The total bacterial cross-contamination of chicken carcass surface of the chickens raised on a floor type farm was significantly higher than that of the chickens raised in a battery cages (p<0.05). The total bacterial cross-contamination of chicken carcass surface of the chickens raised on a floor type farm was significantly lower in the 0.5% ionized calcium solution treatment group than in the control group (p<0.05).

Composition of Cotton Textile Dyeing Process Wastewater and its Treatment Characteristics by Ionized Gas (면섬유염색폐수의 공정별 폐수성상과 이온화가스에 의한 처리특성)

  • Lim, Gyeong-Eun;Chung, Paul-gene;Kwon, Ji-Young;Lee, Eun-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.303-308
    • /
    • 2007
  • Three types dyeing wastewater (dark, medium, light color) discharged from cotton textile dyeing with reactive dye was collected at each step of process. Each process dying wastewater was analyzed and treated by ionized gas. The analysis focused on $COD_{Cr}$, SS and color. Bleaching & scouring process wastewater has the highest $COD_{Cr}$ value in the three type dyeing wastewater. SS shows the highest value at dyeing process wastewater in dark and medium color but light color has at finishing process wastewater. The result of process wastewater treatment by ionized gas was that the ionized gas was effective in $COD_{Cr}$ removing of bleaching & scouring process and finishing process wastewater but was not good at dyeing process wastewater. From that result it is estimated that the ionized gas could not work in opening the aromatic ring and react only in aliphatic component of the molecule. Because the surfactants contained in bleaching & scouring process and finishing process wastewater have only one aromatic ring in its molecular structure, in contrast with the reactive dye compounds consist of aromatic rings great part of its molecular structure. The color almost removed in 1.5 hrs reaction time but $COD_{Cr}$ removal effiency was only 30.7% through 3hrs in 1500 mL of total dyeing wastewater treated by 10 L/min ionized gas.

Physico-chemical Characteristics of Ammonia Adsorbed Fly Ash (AAFA)

  • Kim, Jae-kwan;Park, Seok-un;Hong, Jin-pyo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Ammonia Adsorbed Fly Ash (AAFA) samples produced from coal fired plants equipped with SNCR (Selective Non-Catalytic Reduction) of nitrogen oxides with urea have been chemically analyzed, and their physical and dissolution properties have been investigated. XRD results for the ammonia component in AAFA ascertained that ABS (ammonium bisulfate) and AS (ammonium sulfate) were deposited on fly ash as $SO_3$ reacted with unreacted ammonia at SNCR. SEM and EDS images showed that fine ashes on large fly ash surface of sphere type were agglomerated, due to adhesive role of ammonium salts attached fly ashes. Dissolution test results of ammonium salts absorbed on AAFA in distilled water or sea water showed that the proportion of un-ionized $NH_3$ to $NH_4{^+}$ were primarily a function of pH and temperature. Increasing pH and temperature causes an increase in the fraction of un-ionized $NH_3$. At pHs of 9.6 and 10.7, un-ionized $NH_3$ and $NH_4{^+}$ ions are present in equal amounts at distilled water and sea water, respectively.

Corona Discharge and Strong Electrolyzed Water Generation Characteristics of the Electrode System Bedded by Dielectric Pellets (유전체구 충진형 전극계의 코로나방전과 강전해수 발생특성)

  • 김진규
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.46-54
    • /
    • 2002
  • A dielectric pellets bedded parallel plates with a membrane centered have been proposed as an ion separation and collection system in water. and effects of the relative dielectric constant and the applied square wave pulse voltage on the characteristics of ion separation and collection in tap water and NaCl dissolved tap water have been investigated. As a result, electrolyzed water of pH 3.1 and 10.6 were obtained with only tap water at the pulse current of 1.0[A] and flow rate of 0.5[LPM]. And the higher ionized water of pH 2.8 and pH 11.7 ware obtained in 0.1[%wt] NaCl dissolved water. When the dielectric pellets of BaTiO$_3$ having the highest dielectric constant were bedded in the ion separation and collection cell, the ionized water of pH 2.7 and pH 11.7 were obtained with only tap water. And the ionized water of pH 2.4 and pH 12.0 were obtained in 0.1[wt%] NaCl dissolved tap water with the dielectrics pellets bedded ones.