본 연구의 목적은 2차원적 이온전리함 배열의 특성을 분석하고 세기변조방사선치료 선량분포 확인의 유용성을 평가하기 위함이다. 본 실험에 사용된 2차원적 이온전리함 배열(MatriXX, Scanditronix-Wellhofer, IBA, Germany)은 $24{\times}24cm^2$ 범위에 1,024개의 평판형 전리함(용적: $0.08cm^3$, 직경: 4.5 mm, 높이: 5 mm, 배열간격: 7.62 mm)이 일정한 간격으로 배열되어있다. MatriXX의 특성분석을 위해 선량 직선성, 선량률 의존도, 출력 계수, 단기 선릉재현성을 분석하였으며, 선량분포 확인의 신뢰도를 평가하기 위해 Varian사의 동적쐐기와 세기변조 방사선치료의 선량분포를 분석하였다. 선량 직선성의 범위는 $1{\sim}800$cGy이었으며, 1% 미만의 오차율을 보였다. 선량률 의존성(범위 $100{\sim}600MU/min$)은 300 Mu/min을 기준으로 했을 때 모든 선량률 범위에서 0.4% 미만의 선량변화를 보였다. 또한, 물팬톰에서 0.1 cc 지두형 전리함으로 측정한 출력계수와 폴리스틸렌 팬톰에서 MatriXX로 측정한 출력계수를 비교하였다. 이 실험의 결과, $3{\times}3{\sim}24{\times}24cm^2$ 범위에서 0.5% 미만의 일치를 나타내었다. 단기 출력재현성 확인을 위하여 15분 간격으로 6회 측정한 결과, 0.5% 내의 차이를 보였다. 동적쐐기와 세기변조 방사선 조사면의 일치성 실험에서도 치료계획장치의 계산값과 필름측정값이 비교적 잘 일치함을 알 수 있었다. 본 연구를 통해 MatriXX의 물리적인 특성을 분석하였으며 세기변조방사선치료의 품질관리를 위한 유용성을 확인하였다.
목적 : 방사선량 측정시 에너지, 매질, 측정기 등의 측정 조건과 측정 프로토콜에 따라 절대 흡수선량값이 결정된다. 본 연구에서는 이러한 측정 조건의 변화와 측정 프로토콜의 차이에 따른 절대 선량 값을 구하여 비교 분석 하고자 한다. 방법 : 시멘스 선형가속기에서 발생하는 6MV 광자선을 이용하여 3개의 다른 매질(물, 고체 물팬텀, 폴리스틸렌팬텀)내에서 2개의 전리함 (PTW ion chamber, NEL ion chamber)과 2개의 전기계(Victoreen electrometer, Keithley electrometer)를 사용하여 흡수선량을 측정하였다. 매질, 전리함, 전기계등의 측정 조건을 달리하여 서로 다른 조합에 대한 측정값을 TG21, IAEA 프로토콜에 의해 각각 분석하였다. 결과 및 결론 : 2개의 전기계와 2개의 전리함 조합에 따른 TG2l 및 IAEA 의 Ngas,, ND값의 비는 평균적으로 1% 이내에서 일치하였다. 3개의 서로 다른 매질, 4개의 서로 다른 전리함 및 전기계 조합에 따른 12 가지 측정조건에 대한 흡수선량의 변화는 평균 0.6%의 차이를 보여 주였으며 임의의 전리함 및 전기계 조합에 대하여 물팬텀 및 고체물팬텀에 대한 TG21, MEA 측정법에 의한 흡수선량비의 변화 양상이 같은 양상을 보여주고 있으나 그 차이가 평균 1.96%를 보임으로서 고체물팬텀이 절대 흡수선량 측정에는 적절치 않은 것으로 사료된다. TG21 측정법에 따른 물팬텀과 폴리스틸렌팬텀을 이용한 절대 흡수선량값이 1.54%의 차이를 보임으로서 팬텀 매질에 대한 비교 factor가 필요할 것으로 사료된다. 측정매질, 전리함, 전기계 등의 여러 조건에 대한 흡수선량값의 차이가 TG21, IAEA 프로토콜에서 1% 이내의 차이를 보여 주고 있으며 상대적인 변화 양상이 측정법에 상관없이 같은 경향으로 변함으로서 측정조건이 측정법에 영향을 주지 않았음을 알 수 있다. 다만 표준 측정법을 사용할 때 팬텀에 의한 차이는 많이 날 수 있으므로 측정법에서 사용하는 표준 팬텀을 사용 할 것을 권장하며 이것이 어려운 경우는 병원에서 사용하는 팬텀에 대한 보정값을 자체적으로 구하여 사용하는 것이 오차를 줄일 수 있을 것으로 사료된다.
고선량률 근접치료시 사용되는 Ir-192 선원의 방사능을 이온형 전리함을 이용하여 평가하였다. 측정지점으로부터 각각 10 cm 떨어진 거리에 선원을 일정시간동안 위치시킨 후 측정된 전하량을 방사능값으로 환산하였으며 측정된 결과는 제작회사로부터 제공된 값과 비교하였다. 선원의 방사능은 시간이 경과함에 따라 감소하므로 일정기간동안 규칙적으로 방사능를 측정하였으며 측정값은 Ir-192 에 대해서 알려진 반감기를 고려한 계산 값과 비교 분석하였다. 선원의 방사능 측정의 정확도는 측정장치 setup의 정확도에 크게 영향을 받기 때문에 원격조정으로 제어되는 선원위치의 정확도를 평가하였다. 필름에 감광된 감마선의 영상을 Film scanner를 이용하여 분석하였으며 프로그램된 지점에 제대로 위치하는지의 정도를 평가하였다. 예상된 선원위치와 실제 선원위치간의 차이는 최대 1 mm 이내이었으며 이러한 조건하에서 제작회사로부터 제공된 방사능값과 본 연구를 통하여 측정된 값과의 차이는 0.7$\pm$1.5 % 이며 시간에 따른 선원의 변화량을 확인해 본 결과 0.l$\pm$1.2%이었다. 결론적으로, 본 연구에서 사용된 측정방법에 의한 실측값과 제작회사로부터 제공된 방사능값은 현재까지 서로 잘 일치하였고 치료기의 정확성도 확인되었다, 그러나 고선량률 근접치료시 사용되는 선원의 정확한 위치 및 방사능값은 환자치료의 성패를 결정짓는 매우 중요한 인자이므로 지속적인 정도관리가 요구된다.
Cho, Jin Dong;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in;Wu, Hong-Gyun;Park, So-Yeon
한국의학물리학회지:의학물리
/
제28권4호
/
pp.190-196
/
2017
For the $ViewRay^{(R)}$ system (ViewRay Inc., Cleveland, OH, USA) which is representative of magnetic resonance (MR) guided radiotherapy machine, it is important to evaluate effectiveness of AAPM's TG-51 protocol and the effect of the magnetic field on absolute dosimetry. In order to measure the absolute dose, MR-compatible chamber and water phantom system manufactured in this study were used. The materials of the water phantom system were plastic of polymethyl methacrylate (PMMA) and non-ferrous materials. Due to the inherent feature of the $ViewRay^{(R)}$, all Co-60 sources are not located at gantry angle of $0^{\circ}$ while being located at gantry angle of $90^{\circ}$. For this reason, absolute dosimetry was performed based on the measurements in solid water phantom (SWP) and water which determine the SWP to water correction factor. For evaluation of output constancy with gantry angle, measurements were made with ionization chamber inserted in cylindrical water-equivalent phantom. For measured doses in water, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -0.27%, -0.45% and -0.22%, respectively. For measured doses in SWP, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -1.91%, -2.07% and -1.84%, respectively. All values of dose measured in SWP tended to be less than those measured in water by -1.63%. With the reference gantry angles of $0^{\circ}$ and $90^{\circ}$, the maximum values of deviation for Head 1, Head 2 and Head 3 were 0.48%, 1.06% and 0.40%, respectively. The measurement agreement is within the range of results obtainable for conventional treatment machines. The low strength of the magnetic field does not affect dose measurements. Using the SWP to water correction factor, absolute doses for $ViewRay^{(R)}$ system can be measured.
본 연구에서는 극자외선 (Extreme Ultra Violet) 리소그래피의 빛샘원 발생을 위한 플라스 마 집속장치 (Plasma Focus Device)를 설계, 제작하였으며, 이를 이용하여 단펄스 집속 플라스마의 전류, 전압 방전 특성 및 장비의 저항, 인덕턴스의 중요 기초 연구를 수행하였다. 전압, 전류는 C-dot probe 와 B-dot probe를 이용하여 측정하였다. Anode 전극에 1.5, 2, 2.5, 3 kV의 전압을 인가하고 Diode chamber 내의 Ar 기체압력을 1 mTorr-100 Torr 로 변화시켰을 때 발생되는 전압, 전류는 300 mTorr 에서 가장 큰 값을 보였으며, 이때 측정된 LC 공진에 의한 전류 파형으로부터 계산된 시스템 내의 인덕턴스와 임피던스값은 각각 73 nH, $35 m{\Omega}$ 였다. 300 mTorr, 2.5 kV 일 때 Emission spectroscopy를 이용하여 계산한 단펄스 집속 Ar 플라스마내의 전자온도는 Local Thermodynamic Equilibrium(LTE) 가정으로부터 T=13600 K 이었고 이온밀도 및 이온화율은 각각 $N_i = 8.25{\times}10^{15}/ cc,\;{\delta}= 77.8%$ 이었다.
본 연구에서는 치료용 광자선의 품질관리를 위하여 다채널 측정기를 개발하였다. 측정기는 여러 개의 전리함들이 삽입된 팬텀으로 구성되어 있다. 각 전리함은 탄소가 도포된 마이크로필름으로 제작된 초소형 평행평판 전리함과 같다. 본 연구에서는 고체 팬텀에 삽입된 6개의 전리함에 대하여 6 MV X-선을 이용하여 전기적 특성을 조사하였다 측정결과 누설전류는 0.5 ph 이내로 안정적이었고, 재현성은 0.5$\%$, 선형성은 0.5$\%$ 이내로 나타났다. 그리고 선량률 효과는 모든 전리함이 0.7$\%$ 이하로 나타났다. 또한 다른 전리함의 영향으로 인한 흡수선량의 변화는 약 0.8$\%$ 이내로 나타났다. 개발된 측정기는 치료용 광자선에 대하여 출력측정 시 선질결정에 활용할 수 있으며 근사적인 깊이선량률의 측정에도 이용될 수 있다.
목적 : 서울대학교병원에서 개발한 정위방사선수술 시스템에서의 표준적 정위방사선수술기법을 적용시 중심점에서의 방사선량 오차를 확인하고자 하였다. 재료 및 방법 : 내경 10 mm 20 mm인 원통형의 3차 콜리메이터를 장착후 5개의 호형(arc)으로 구성된 표준형 정위방사선수술계획에 따라 시행한 정위방사선수술시의 선량을 측정하였다. 방사선은 CL2100C 선형가속기에서 발생하는 6 MV X-선을 사용하였고 자체 개발한 다용도 팬톰에서 0.125 cc 전리함 및 다이오드 검출기로 중심점 선량을 측정하였다. 결과 : 내경 20 mm인 3차 콜리메이터를 장착한 정위방사선수술 시행시 호형에 따른 계획선량과 측정선량 간 오차는 0.125 cc 전리함 측정시 $-0.73\%$ 내지 $-2.69\%$, 다이오드 검출기 측정시 $-1.29\%$ 내지 $-2.91\%$이었다. 내경 10 mm 인 3차 콜리메이터 장착한 경우의 오차는 다이오드 검출기로 측정하였을 때 $-2.39\%$ 내지 $-4.25\%$이었다. 결론 : 중심점 선량 오차는 약 $3\%$ 정도로서 DICOM 3.0 표준형식을 통한 영상자료 처리 등의 개선책을 통한 최소화 노력이 필요하다.
To obtain 7 MeV electron beam which is suitable for treatment of the chest wall after radical of modified radical mastectomy, the authors reduced the energy of electron beam by means by Lucite plate inserted in the beam. To determine the proper thickness of the Lucite plate necessary to reduce the energy of 9 MeV electron beam to 6 MeV, dosimetry was made by using a parallel plate ionization chamber in polystyrene phantom. Separation between two adjacent fields, 7 MeV for chest wall and 12 MeV for internal mammary region, was studied by means of film dosimetry in both polytyrene phantom and Humanoid phantom. The results were as follows. 1. The average energy of 9 MeV electron beam transmitted through the Lucite plate was reduced. Reduction was proportional to the thickness of the Lucite plate in the rate of 1.7 MeV/cm. 2. The proper thickness of the Lucite plate necessary to obtain 6 MeV electron beam from 9 MeV was 1.2 cm. 3. 7 MeV electron beam, 80% dose at 2cm depth, is adequate for treatment of the chest wall. 4. Proper separation between two adjacent electron fields, 7 MeV and 12 MeV, was 5mm on both flat surface and sloping surface to produce uniform dose distribution.
Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
한국의학물리학회:학술대회논문집
/
한국의학물리학회 2003년도 제27회 추계학술대회
/
pp.64-64
/
2003
Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.
차폐된 질 원주기구를 이용한 강내치료시 Co-60 선원에 대한 정확한 흡수선량을 결정 하고자 선원을 교정하고, 질 원주기구에 의한 선량분포변화를 조사하였다. 선량분포의 변화량은 직경 2.5 cm 차폐된 질 원주기구를 폴리스틸렌 팬톰에 설치하여 전리함으로 측정하였으며, 부채꼴 모양인 0.55cm 두께의 9$0^{\circ}C$ 연으로 차폐된 면과 차폐되지 않은 면의 선량분포에 대한 영향을 상대선량 감소율로 측정하였다. 측정된 선량분포의 변화량을 제작사의 선량분포도 및 다점 분할방식으로 구한 선량율표와 비교하였다. 질 원주기구를 이용한 선량 감소율은 차폐되지 않은 변의 경우 원주기구 표면 1cm 거리에서 4.4%를 보였고, 차폐된 면에서는 원주기구 표면에서 20.4% 를 나타냈다. 9$0^{\circ}C$연 차폐된 질 원주기구의 선량감쇄효율은 Co-60 선원에서 평균 0.2가 되었다. Co-60 이동형 선원의 선량분포는 다 점분할방식의 선량율표와 4.1% 이내로 일치하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.