• Title/Summary/Keyword: Ion-Migration

Search Result 191, Processing Time 0.025 seconds

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Structural and Electrochemical Properties of Doped LiFe0.48Mn0.48Mg0.04PO4 as Cathode Material for Lithium ion Batteries

  • Jang, Donghyuk;Palanisamy, Kowsalya;Kim, Yunok;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.102-107
    • /
    • 2013
  • The electrochemical properties of Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ and pure $LiFe_{0.5}Mn_{0.5}PO_4$ olivine cathodes are examined and the lattice parameters are refined by Rietveld analysis. The calculated atomic parameters from the refinement show that $Mg^{2+}$ doping has a significant effect in the olivine $LiFeMnPO_4$ structure. The unit cell volume is 297.053(2) ${\AA}^3$ for pure $LiFe_{0.5}Mn_{0.5}PO_4$ and is decreased to 296.177(1) ${\AA}^3$ for Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample. The doping of $Mg^{2+}$ cation with atomic radius smaller than $Mn^{2+}$ and $Fe^{2+}$ ion induces longer Li-O bond length in $LiO_6$ octahedra of the olivine structure. The larger interstitial sites in $LiO_6$ octahedra facilitate the lithium ion migration and also enhance the diffusion kinetics of olivine cathode material. The $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample with larger Li-O bond length delivers higher discharge capacities and also notably increases the rate capability of the electrode.

Chiral Separation of Quinolone Antibacterial Agent by Capillary Electrophoresis (모세관 전기 영동을 이용한 퀴놀린계 항생제의 광학 이성질체 분석)

  • Gang, Dae Cheon;Jo, Seung Il;Jeong, Du Su;Choe, Gyu Seong;Kim, Yong Seong
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.412-429
    • /
    • 2002
  • Chiral separation of gemifloxacin, an quinolone antibacterial agent, using (+)-(18-crown-6)-tetracar-boxylic acid $(18C6H_4)$ as a chiral selector was performed by capillary electrophoresis (CE). Direct analysis of quinolone antibacterial agent in body fluid is beneficial in terms of fast analysis time, multicomponent analysis. However, high con-centration of sodium ion in body fluid can prevent gemifloxacin from interacting with $18C6H_4$ since sodium ion has high affinity with $18C6H_4$ due to the strong charge interaction. Ethylenediaminetetraacetic acid (EDTA), as a chelating ligand, was added in the running buffer in order to reduce the interaction between sodium ion and the chiral selector. Increased separation efficiency and reduced migration time were observed while sodium ion exists in the sample solution at the concentration up to 150 mM.

Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors (CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름)

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF

An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode (관형 코로나 방전전극을 이용한 이온풍속의 최대화)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

Chlorine effect on ion migration for PCBs under temperature-humidity bias test (고온고습 전원인가 시험에서 Cl에 의한 이온 마이그레이션 불량)

  • Huh, Seok-Hwan;Shin, An-Seob
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • By the trends of electronic package to be more integrative, the fine Cu trace pitch of organic PCB is required to be a robust design. In this study, the short circuit failure mechanism of PCB with a Cl element under the Temperature humidity bias test ($85^{\circ}C$/85%RH/3.5V) was examined by micro-structural study. A focused ion beam (FIB) and an electron probe micro analysis (EPMA) were used to polish the cross sections to reveal details of the microstructure of the failure mode. It is found that $CuCl_x$ were formed and grown on Cu trace during the $170^{\circ}C$/3hrs and that $CuCl_x$ was decomposed into Cu dendrite and $Cl_2$ gas during the $85^{\circ}C$/85%RH/3.5V. It is suggested that Cu dendrites formed on Cu trace lead to a short circuit failure between a pair of Cu traces.

Development of LiFePO4/FePO4 Electrode for Electro-Osmotic Pump using Li+ Migration

  • Baek, Jaewook;Kim, Kyeonghyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 2018
  • Olivine structure of $LiFePO_4$ (LFP) is one of the most commonly used materials in aqueous rechargeable lithium batteries (ARLBs), and can store and release charge through the insertion/de-insertion of $Li^+$ between LFP and FP. We have fabricated LFP and LFP/FP electrodes on titanium paper and studied their electrochemical properties in 2 M $Li_2SO_4$. The LFP/FP electrode was determined to be a suitable electrode for electo-ostmotic pump (EOP) in terms of efficiency in water and 0.5 mM $Li_2SO_4$ solution. Experiments to determine the effect of cations and anions on the performance of EOP using LFP/FP electrode have shown that $Li^+$ is the best cation and that the anion does not significantly affect the performance of the EOP. As the concentration of $Li_2SO_4$ solution was increased, the current increased. The flow rate peaked at $4.8{\mu}L/30s$ in 1.0 mM $Li_2SO_4$ solution and then decreased. When the EOP was tested continuously in 1.0 mM $Li_2SO_4$ solution, the EOP transported approximately 35 mL of fluid while maintaining a stable flow rate and current for 144 h.

Testing of the permeability of concrete box beam with ion transport method in service

  • Wang, Jia Chun
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.461-471
    • /
    • 2015
  • The permeability is the most direct indicator to reflect the durability of concrete, and the testing methods based on external electric field can be used to evaluate concrete permeability rapidly. This study aims to use an experiment method to accurately predict the permeability of concrete box beam during service. The ion migration experiments and concrete surface resistivity are measured to evaluate permeability of five concrete box beams, and the relations between these results in service concrete and electric flux after 6 hours by ASTM C1202 in the laboratory are analyzed. The chloride diffusion coefficient of concrete, concrete surface resistivity and concrete 6 hours charge have good correlation relationship, which denote that the chloride diffusion coefficient and the surface resistivity of concrete are effective for evaluating the durability of concrete structures. The chloride diffusion coefficient of concrete is directly evaluated permeability of concrete box beam in service and may be used to predict the service life, which is fit to engineering applications and the concrete box beam is non-destructive. The concrete surface resistivity is easier available than the chloride diffusion coefficient, but it is directly not used to calculate the service life. Therefore the mathematical relation of the concrete surface resistivity and the concrete chloride diffusion coefficient need to be found, which the service life of reinforced concrete is obtained by the concrete surface resistivity.

Electrokinetic Remediation of Cobalt Contaminated Soil Using Ethanoic Buffer

  • Kim, Gye-Nam;Won, Hui-Jun;Oh, Won-Zin;Shim, Jun-Bo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • After kaolin clay was artificially contaminated with Co$^{2+}$ ion, the remediation characteristics were analyzed by the electrokinetic method. Ethanoic buffer was injected in the soil column and $CH_3$COOH was continuously inputted to the cathode reservoir to restrain the pH increase. Since the pH of the cathode side of the soil column was 4.0 initially and increased to only 6.5 after remediation for 43.6 hours, precipitate, Co(OH)$_2$, was not formed in the column. The effluent rate increased with the passage of time and Co$^{2+}$ removal in the column at the initial time were mainly controlled by ion migration. 13.1% of the total amount of Co$^{2+}$ in the soil column was removed in 10 hours, 46.8% of the total Co$^{2+}$ in 20.8 hours, 71.7% of the total Co$^{2+}$ in 30.1 hours, and 94.6% of the total Co$^{2+}$ in 43.6 hours. Meanwhile, residual concentrations in the column calculated by the developed model were similar to those by experiment. experiment.

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.