DOI QR코드

DOI QR Code

Development of LiFePO4/FePO4 Electrode for Electro-Osmotic Pump using Li+ Migration

  • Received : 2017.11.18
  • Accepted : 2017.11.23
  • Published : 2018.06.30

Abstract

Olivine structure of $LiFePO_4$ (LFP) is one of the most commonly used materials in aqueous rechargeable lithium batteries (ARLBs), and can store and release charge through the insertion/de-insertion of $Li^+$ between LFP and FP. We have fabricated LFP and LFP/FP electrodes on titanium paper and studied their electrochemical properties in 2 M $Li_2SO_4$. The LFP/FP electrode was determined to be a suitable electrode for electo-ostmotic pump (EOP) in terms of efficiency in water and 0.5 mM $Li_2SO_4$ solution. Experiments to determine the effect of cations and anions on the performance of EOP using LFP/FP electrode have shown that $Li^+$ is the best cation and that the anion does not significantly affect the performance of the EOP. As the concentration of $Li_2SO_4$ solution was increased, the current increased. The flow rate peaked at $4.8{\mu}L/30s$ in 1.0 mM $Li_2SO_4$ solution and then decreased. When the EOP was tested continuously in 1.0 mM $Li_2SO_4$ solution, the EOP transported approximately 35 mL of fluid while maintaining a stable flow rate and current for 144 h.

Keywords

References

  1. R. J. Hunter, In Zeta Potential in Colloid Science, Academic Press: 1981.
  2. S. Yao, J. G. Santiago, J. Coll. Interf. Sci., 2003, 268(1), 133-142. https://doi.org/10.1016/S0021-9797(03)00731-8
  3. W. Shin, J. M. Lee, R. K. Nagarale, S. J. Shin, A. Heller, J. Am. Chem. Soc., 2011, 133(8), 2374-2377. https://doi.org/10.1021/ja110214f
  4. W. Shin, E. Zhu, R. K. Nagarale, C. H. Kim, J. M. Lee, S. J. Shin, A. Heller, Anal. Chem., 2011, 83(12), 5023-5025. https://doi.org/10.1021/ac201118t
  5. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  6. R. Yazami, P. Touzain, J. Power Sources, 1983, 9(3), 365-371. https://doi.org/10.1016/0378-7753(83)87040-2
  7. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 1997, 144(4), 1188-1194. https://doi.org/10.1149/1.1837571
  8. Z. Chen, J. R. Dahn, J. Electrochem. Soc., 2002, 149(9), A1184-A1189. https://doi.org/10.1149/1.1498255
  9. J. Song, B. Sun, H. Liu, Z. Ma, Z. Chen, G. Shao, G. Wang, ACS Appl. Mater. Interf., 2016, 8(24), 15225-15231. https://doi.org/10.1021/acsami.6b02567
  10. H. Manjunatha, T. V. Venkatesha, G. S. Suresh, Electrochim. Acta, 2011, 58, 247-257. https://doi.org/10.1016/j.electacta.2011.09.041
  11. Y. Hou, X. Wang, Y. Zhu, C. Hu, Z. Chang, Y. Wu, R. Holze, J. Mater. Chem. A, 2013, 1(46), 14713-14718. https://doi.org/10.1039/c3ta13472e
  12. N. Yesibolati, N. Umirov, A. Koishybay, M. Omarova, I. Kurmanbayeva, Y. Zhang, Y. Zhao, Z. Bakenov, Electrochim. Acta, 2015, 152, 505-511. https://doi.org/10.1016/j.electacta.2014.11.168
  13. X. Zeng, Q. Liu, M. Chen, L. Leng, T. Shu, L. Du, H. Song, S. Liao, Electrochim. Acta, 2015, 177, 277-282. https://doi.org/10.1016/j.electacta.2014.12.088
  14. N. Alias, A. A. Mohamad, J. Power Sources, 2015, 274, 237-251. https://doi.org/10.1016/j.jpowsour.2014.10.009
  15. H. D. B. Jenkins, K. P. Thakur, J. Chem. Edu., 1979, 56(9), 576. https://doi.org/10.1021/ed056p576