• Title/Summary/Keyword: Ion substitution

Search Result 226, Processing Time 0.029 seconds

Fabrication and dielectric properties of $LaAlO_3-BaZrO_3$ perovskites ($LaAlO_3-BaZrO_3$계 perovskites의 제조 및 유전특성)

  • Lee, So-Hee;Kim, Shin;Shin, Hyun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.325-325
    • /
    • 2007
  • The perovskites in the $LaAlO_3-BaZrO_3$ system (i.e., $(1-x)LaAlO_3-xBaZrO_3$ were fabricated by a solid state reaction and their dielectric properties were investigated. For the compositions of x=0.1~0.9, the mixture of $LaAlO_3$ with a rhombohedral structure and $BaZrO_3$ with a cubic was observed when the sintering was conducted at $1500^{\circ}C$, indicating that the solubility of constituent elements was very low and a narrow solid solution region might exist. The large difference of ionic radii between $La^{3+}$ ion (0.136nm, C.N.=12) and $Ba^{2+}$ ion (0.161nm) or $Al^{3+}$ ion (0.0535nm, C.N.=6) and $Zr^{4+}$ ion (0.072nm) might hinder the mutual substitution. Within the compositions of x=0~0.7, the dielectric constant of the mixture increased with the amount of $BaZrO_3$, i.e., x value, which was in good agreement with the logarithmic mixing rule (In $_{r,i}={\Sigma}v_iln\;_{r,i}$). The increase in $BaZrO_3$ doping decreased $Q{\times}f$ value significantly due to the low $Q{\times}f$ value of $BaZrO_3$ itself, a poor microstructure of the mixture with an increased grain boundary area per volume, and defects in the cation and oxygen sub-lattices which were respectively caused by the evaporation of barium during the sintering process and the substitution of Ba on La-site or Al on Zr-site.

  • PDF

Mg Atom Substitution for Nonstoichiometric Na+ β-Alumina: A First Principles Study (비화학양론적 Na+β-alumina를 위한 Mg 원자의 치환: 제일원리 계산)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Jeong, Yong-Chan;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.55-59
    • /
    • 2010
  • $Na^+$ ion conductivity can be improved by the substitution of an Mg atom for an Al atom to form a nonstoichiometric $Na^+$ $\beta$-alumina. We performed a first principles study to investigate the most stable substitution site of an Mg atom and the resulting structural change of the nonstoichiometric $Na^+$ $\beta$-alumina. Al atoms were classified as four different layers in the spinel block that are separated by conduction planes in the nonstoichiometric $Na^+$ $\beta$-alumina. The substitution of an Mg atom for an Al atom at a tetragonal site was more favorable than that at an octahedral site. The substitution in the spinel block was more favorable than that close to the conduction plane. This result was well explained by the volume changes of the polyhedrons, by the standard deviation of the Mg-O distance, and by the comparison with bulk MgO structure. Our result indicates that the most preferable site for the Mg atom was the tetrahedral site at the spinel block in the nonstoichiometric $Na^+$ $\beta$-alumina.

Resin Synthesis of Adsorbent Uranium(VI) Ion using 1-Aza-18-Crown-6 (1-Aza-18-Crown-6를 이용한 우라늄(VI) 이온 흡착제 수지 합성)

  • Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.49-60
    • /
    • 2006
  • The ion exchange resins have been synthesized from chlormethyl styrene - 1,4 - divinylbenzene(DVB) with 1%, 2%, 4% and 8%-crosslinking and 1-aza-18-crown-6 macrocyclic ligand by copolymerization method. Content of chlorine in styrene-DVB copolymer was decreased as crosslink increased and it is because as crosslink increased 1%, 2%, 4% and 8% DVB content increased and crosslink density increased and cavity was reduced. Functional group of resin almost disappeared as C-C1 peak around $700cm^{-1}$ was substituted with 1-aza-18-C-6 macrocyclic ligand and new peak of C-N around $1020cm^{-1}$ appeared, so it was confirmed that styrene-DVB copolymer and ligand were compounded. As crosslink increased in the analysis of element contents, it resulted in the reduction of nitrogen content and it is because as crosslink increased, it led to the reduction of chlorine content in the process of substitution reaction and it affected macrocyclic ligand substituted. Thermo analysis curve of functional synthetic resin decomposed three part of 1-aza-18-C-6, styrene, and DVB. Form of functional synthetic resin showed distortion of its particles as macrocyclic ligand was introduced to styrene-DVB copolymer and hydrogen of ligand caused substitution with chlorine element of styrene molecule.

The Effect of Synthetic Heat-treatment Temperatures on the Substitution Behavior of Lithium Ions in Potassium Tetratitanate (합성 열처리온도 변화가 Potassium Tetratitanate의 리튬 이온 치환거동에 미치는 영향)

  • 이재만;윤순길;이상훈;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.955-961
    • /
    • 2000
  • 사티탄산칼륨을 리튬이온 전지의 양극재료로써 사용하고자 할 때 사티탄산칼륨의 합성 열처리 온도가 리튬이온 치환량에 미치는 영향에 대해 조사하였다. 사티탄산칼륨은 $K_2$O와 TiO$_2$의 몰 비를 1 : 3.91로 칭량하여 95$0^{\circ}C$, 100$0^{\circ}C$, 105$0^{\circ}C$에서 각각 합성하였다. 그 후, 사티탄산칼륨의 (Ti$_4$O$_{9}$ )$^{2-}$ 층간에 존재하는 $K^{+}$ 이온을 H$^{+}$ 이온으로 치환하고 이것을 다시 Li$^{+}$ 이온으로 치환하였다. 사티탄산칼륨의 합성 열처리 온도가 증가할수록 사티탄산칼륨의 (Ti$_4$O$_{9}$ )$^{2-}$ 층간의 거리가 감소했고 사티탄산칼륨의 길이가 증가했다. 95$0^{\circ}C$에서 열처리된 사티탄산칼륨의 리튬이온 치환량이 가장 많았다. 이는 상대적으로 낮은 합성 열처리 온도에서 사티탄산칼륨의 (Ti$_4$O$_{9}$ )$^{2-}$ 층간의 거리가 넓어져 리튬이온의 층간 이동이 쉬어졌고, 고온에서 열처리되어 길이가 긴 사티탄산칼륨에 비해 저온에서 열처리된 사티탄산칼륨은 길이가 짧아져 리튬이온이 (Ti$_4$O$_{9}$ )$^{2-}$ 층간으로 이동해 가는 거리가 짧아졌으며 아울러 짧은 사티탄산칼륨의 개수가 동일한 무게 당긴 사티탄산칼륨의 개수보다 많으므로 리튬이온의 치환량이 많아진다고 사료된다.

  • PDF

Local Structure Refinement of the $BaFe_{1-x}Sn_xO_{3-y}$ System with Fe K-Edge X-Ray Absorption (XANES/EXAFS) Spectroscopy

  • 김민규;곽기섭;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.743-749
    • /
    • 1997
  • Local structure refinement of the BaFe1-xSnxO3-y system (x=0.00-0.50) has been carried out with Fe K-edge x-ray absorpion spectroscopic studies. It is found out that the Fe ions are placed in two different symmetric sites such as tetrahedral and octahedral sites in the compounds by comparison with Fe K-edge x-ray absorption near edge structure (XANES) spectrum of the γ-Fe2O3 compound as a reference. Small absorption peaks of dipole-forbiden transitions appear at a pre-edge region of 7111 eV due to the existence of Fe ions in the tetrahedral and octahedral sites. The peak intensity decreases with the substitution amount of Sn ion. Three different absorption peaks of 1s→4p dipole-allowed transition appear on the energy region between 7123 and 7131 eV. The peaks correspond to 1s→4p main transition of Fe ions in tetrahedral and octahedral sites and 1s→4p transition followed by the shakedown process of ligand to metal charge transfer. The bond distances between Fe ions in the tetrahedral site and nearest neighboring oxygen atom (Fe-4O), and those in octahedral site (Fe-6O) are determined with the extended x-ray absorption fine structure (EXAFS) analysis. Two different interatomic distances increase with the substitution amount of Sn ion and also the bond lengths of Fe-4O are shorter than those of Fe-6O in all compounds.

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

The Substitution Reaction of Equatorial-Skew-[Co(TRDTRA)($OH_2$)] Complex with $CN^-, NO^{-}_{2}$ and $NCS^-$ ion (Equatorial-Skew형 [Co(TRDTRA)($OH_2$)] 착물과 $CN^-, NO^{-}_{2}$ 그리고 $NCS^-$ 이온간의 치환반응)

  • Dong-Yeub Kim;Young-Jae Cho;Dong-Jin Lee;Chang-Eon Oh;Doh Myung-ki
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.405-411
    • /
    • 1992
  • The substitution reaction and structrue of products obtained from the reaction of Equatorial-Skew-[Co(TRDTRA)($OH_2$)] (TRDTRA = trimethylenediaminetriacetate) with $CN^-, NO^{-}_{2}$ and $NCS^-$ ions have been investigated by means of electronic absorption spectroscopy and theoretical calculation based on the Yamatera's theory. According to kinetic data, the substitution reaction order for the complexes such as $CN^-, NO^{-}_{2}$ and $NCS^-$ was the first order, respectively, and overall reaction order was second order. It has been determined that the structure of products having $CN^{-} and NO^{-}_{2}$ ions was Polar-Chair type complexes which were accompanying with isomerization and having $NCS^-$ ion was Equatorial-Skew type complex which was not accompanying with isomerization.

  • PDF

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

Effects of Ion and Protic Solvent on Nucleophilic Aromatic Substitution (SNAr) Reactions

  • Park, Sung-Woo;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2571-2574
    • /
    • 2010
  • We investigate the mechanism of $S_NAr$ fluorination reactions under the influence of protic solvents and ions. We find that counterion or protic solvent alone retards the $S_NAr$ reactions, but together they may promote the reaction. In this mechanism, the protic solvent acts on the counterion as a Lewis base, and the nucleophile reacts as an ion pair. We also show that an anion (mesylate) may exhibit catalytic effects, suggesting the role of ionic liquids for accelerating the $S_NAr$ reactions.

Adsorption of Metal Ions on Cryptand Synthetic Resin (Cryptand 합성수지에 위한 금속 이온들의 흡착)

  • Lee Chi-Young;Kim Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.38-44
    • /
    • 2005
  • Cryptand resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of $1\%,\;2\%,\;5\%\;and\;10\%$ by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium$(UO_2^{2+})$ ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO_2^{2+})$ > zinc$(Zn^{2+})$ > samarium$(Sm^{3+})$ ion. The adsorption was in order of $1\%>2\%>5\%>10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.