The Substitution Reaction of Equatorial-Skew-[Co(TRDTRA)($OH_2$)] Complex with $CN^-, NO^{-}_{2}$ and $NCS^-$ ion

Equatorial-Skew형 [Co(TRDTRA)($OH_2$)] 착물과 $CN^-, NO^{-}_{2}$ 그리고 $NCS^-$ 이온간의 치환반응

  • Dong-Yeub Kim (Department of Chemistry, College of Science, Yeungnam University) ;
  • Young-Jae Cho (Department of Chemistry, College of Science, Yeungnam University) ;
  • Dong-Jin Lee (Department of Industrial Chemistry, Kyungbuk Sanup University) ;
  • Chang-Eon Oh (Department of Chemistry, College of Science, Yeungnam University) ;
  • Doh Myung-ki (Department of Chemistry, College of Science, Yeungnam University)
  • 김동엽 (영남대학교 이과대학 화학과) ;
  • 조영재 (영남대학교 이과대학 화학과) ;
  • 이동진 (경북산업대학교 공업화학과) ;
  • 오창언 (영남대학교 이과대학 화학과) ;
  • 도명기 (영남대학교 이과대학 화학과)
  • Published : 1992.06.20

Abstract

The substitution reaction and structrue of products obtained from the reaction of Equatorial-Skew-[Co(TRDTRA)($OH_2$)] (TRDTRA = trimethylenediaminetriacetate) with $CN^-, NO^{-}_{2}$ and $NCS^-$ ions have been investigated by means of electronic absorption spectroscopy and theoretical calculation based on the Yamatera's theory. According to kinetic data, the substitution reaction order for the complexes such as $CN^-, NO^{-}_{2}$ and $NCS^-$ was the first order, respectively, and overall reaction order was second order. It has been determined that the structure of products having $CN^{-} and NO^{-}_{2}$ ions was Polar-Chair type complexes which were accompanying with isomerization and having $NCS^-$ ion was Equatorial-Skew type complex which was not accompanying with isomerization.

Equatorial-Skew형 [Co(TRDTRA)($OH_2$)]착물과 $CN^-, NO^{-}_{2}$ 그리고 $NCS^-$ 이온 간의 치환반응 결과 생성된 착물의 치환반응성 및 구조를 전자흡수 스펙트럼과 Yamatera 이론에 따라 조사하였다. 속도록적 자료로부터 착물과 $CN^-, NO^{-}_{2}$ 그리고 $NCS^-$ 이온의 반응차수는 각각 1차이며 총괄 반응차수는 2차임을 알 수 있었다. $CN^-$$NO^{-}_{2}$ 이온에서 생성된 착물의 구조는 이성질화 반응이 동반된 Polar-Chair 형이며, $NCS^-$ 이온의 경우에는 이성질화 반응이 동반되지 않는 Equatorial-Skew 형임을 알 수 있었다.

Keywords

References

  1. J. Am. Chem. Soc. v.81 H. A. Weakliem;J. H. Hoard
  2. Bull. Chem. Soc. Japan v.29 M. Mori;M. Shibata;E. Kyuno;H. Nakajima
  3. Helv. Chim. Acta v.32 G. Schwarjenbach
  4. J. Am. Chem. Soc. v.91 G. S. Blackmer;R. E. Hamm;J. I. Legg
  5. J. Korean Chem. Soc. v.29 D. J. Lee;B. G. Kim;M. K. Doh
  6. Inorg. Chem. v.12 J. D. Bell;G. L. Blaskmer
  7. Inorg. Chem. v.7 C. W. Vansaun;B. E. Douglas
  8. Bull. Chem. Soc. Japan v.49 M. K. Doh;H. Orgino;J. Fujita;K. Saito
  9. Bull. Chem. Soc. Japan v.48 M. K. Doh;J. Fujita;H. Orgino;K. Saito
  10. Bull. Chem. Soc. Japan v.31 H. Yamatera
  11. Basic Reaction Kinetics and Mechanism H. E. Avery
  12. J. Chem. Phys. v.3 H. Erying
  13. Naturwissen. v.11 K. Fajans
  14. Bull. Chem. Soc. Japan v.13 R. Tsuchida
  15. Bull. Chem. Soc. Japan v.29 Y. Shimura;R. Tsuchida
  16. Chemical Kinetics and Reaction Mechanism G. Wilkinson