• Title/Summary/Keyword: Ion scattering

Search Result 184, Processing Time 0.021 seconds

Spectrometer for the Study of Angle-and Energy-Resolved Reactive Ion Scattering at Surfaces

  • S-J. Han;C.-W. Lee;C.-H. Hwang;K.-H. Lee;M. C. Yang;H. Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.883-888
    • /
    • 2001
  • We describe an ion-surface scattering apparatus newly developed to investigate the reactive scattering process of low-energy alkali-metal ions at surfaces. The apparatus consists of an alkali-metal ion gun that is rotatable by 360°, a quadrupole mass spectrometer (QMS) with an ion energy analyzer, a sample manipulator with a heating-and-cooling stage, and an ultrahigh vacuum (UHV) chamber that houses these components. Preliminary experimental results obtained from the apparatus are presented on angular and energy distributions of the ions scattered from clean Pt(111) and water-adsorbed Pt surfaces.

Effect of surface roughness onto the scattering in low loss mirrors (기판의 표면거칠기와 반사경 산란에 대한 연구)

  • 조현주;신명진;이재철
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2002
  • The effect of surface roughness on mirror scattering has been studied. Five kinds of substrates with different surface roughness were fabricated. On those substrates, a dielectric multi-layer coating with high reflectivity was deposited by ion beam sputtering and electron beam evaporation. A total integrated scattering measurement set-up was built for the evaluation of deposited samples. Most of the ion beam sputtered mirrors showed lower scattering than the electron beam evaporated one, which deposited on substrates similar in surface roughness. Over ~2 $\AA$ in surface roughness, scattering strongly depend on the micro-structure of the super-polished surface. The lowest scattering we have achieved is 2.06 ppm by ion beam sputtering from the substrate with surface roughness of 0.23 $\AA$.

Sputtering of traget materials by the ion scattering monte carlo calculation (이온 산란 몬테칼로 계산에 의한 시료 물질의 스퍼터링)

  • 김영삼;이상석;김영권;최은하;조광섭
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.55-62
    • /
    • 1999
  • Monte Carlo ion scattering program is improved with the single scattering methods where the total cross section and the mean free path are calculated as a function of atomic density during ion scattering in matter. The relations among the parameters of incident ions and substrate materials are investigated to the sputtering phenomena. The sputtering yield has been analyzed with the dependence on the incident ion species and energy, incident angle, and surface binding energy. The energy distribution of sputtered particles is discussed.

  • PDF

Development of the Collective Thomson Scattering System in KAERI

  • Park, Min;Kim, Seon-Ho;An, Chan-Yong;Kim, Seong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.521-521
    • /
    • 2013
  • Collective Thomson scattering (CTS) system is being developed in KAERI based on high power gyrotrons. CTS is a promising diagnostic method to measure fast ion distributions and potentially the fusion product alpha particles in magnetically confined plasmas. By utilizing millimeter-waves from high power gyrotrons as a probing beam, spatially and temporally resolved 1-D ion velocity distributions can be obtained from the scattered radiation with less scattering geometrical constraints. The pulse modulation of gyrotrons enables to separate scattering signal from ECE background noises. The feasibility was assessed with the calculation of spectral density functions under the condition of KSTAR plasmas. Further CTS system requirements are also discussed.

  • PDF

Structure Analysis of BaTiO3 Film on the MgO(100) Surface by Impact-Collision Ion Scattering Spectroscopy (직충돌 이온산란 분광법을 사용한 MgO(100) 면에 성장된 BaTiO3막의 구조해석)

  • Hwang, Yeon;Lee, Tae-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.62-67
    • /
    • 2006
  • Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) using 2 keV $He^+$ ion was applied to study the geometrical structure of the $BaTiO_3$ thin film which was grown on the MgO(100) surface. Hetero-epitaxial $BaTiO_3$ layers were formed on the MgO(100) surface by thermal evaporation of titanium followed first by oxidation at $400^{\circ}C$, subsequently by barium evaporation, and finally by annealing at $800^{\circ}C$. The atomic structure of $BaTiO_3$ layers was investigated by the scattering intensity variation of $He^+$ ions on TOF-ICISS and by the patterns of reflection high energy electron diffraction. The scattered ion intensity was measured along the <001> and <011> azimuth varying the incident angle. Our investigation revealed that perovskite structured $BaTiO_3$ layers were grown with a larger lattice parameter than that of the bulk phase on the MgO(100) surface.

Reactive Ion Scattering of Low Energy Cs+ from Surfaces. A Technique for Surface Molecular Analysis

  • Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.389-398
    • /
    • 2011
  • Although the currently available surface spectroscopic techniques provide powerful means of studying atoms and simple molecules on surfaces, the identification of complex molecules and functional groups is a major concern in surface analysis. This article describes a recently developed method of surface molecular analysis based on reactive ion scattering (RIS) of low energy (< 100 eV) $Cs^+$ beams. The RIS method can detect surface molecules via a mechanism in which a $Cs^+$ projectile picks up an adsorbate from the surface during the scattering process. The basic principles of the method are reviewed and its applications are discussed by showing several examples from studies of molecules and their reactions on surfaces.

Atomic Structure Analysis of BaO Layers on the Si(100) Surface by Impact-Collision ion Scattering Spectroscopy

  • Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.17 no.2
    • /
    • pp.51-54
    • /
    • 2006
  • BaO layers were formed on the Si(100) surface by thermal evaporation of barium metal with simultaneous oxidation. The atomic structure of BaO layers at the initial stage of the deposition was investigated by the scattering intensity variation of $He^+$ions on time-of-flight (TOF) impact-collision ion scattering (ICISS). The results show that several number of BaO layers are formed on the Si(100) surface with the lattice parameter of bulk phase, and the occupation of oxygen atoms of the BaO layers is on-top site of silicon atoms.

Atomic Structure of TiO Epitaxial Layers Deposited on the MgO(100) Surface

  • Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.433-437
    • /
    • 2002
  • Impact-collision ion scattering spectroscopy was applied to study the geometrical structure of epitaxially grown TiO layers on the MgO(100) surface. Hetero-epitaxial TiO layer was formed by thermal evaporation of titanium onto the MgO(100) surface followed by the exposure to oxygen at $400{\circ}$. The well-ordered TiO structure was confirmed by the impact-collision ion scattering spectroscopy and reflection high energy electron diffraction patterns. It is revealed that the Ti and O atoms are located on the on-top site of the MgO(100) surface and the TiO overlayers are composed of little three dimensional islands.

Surface Structure Analysis of Solids by Impact Collision Ion Scattering Spectroscopy (3): Surface Structure of Ceramics (직충돌 이온산란 분광법(ICISS)에 의한 고체 표면구조의 해석(3): 세라믹 재료의 표면 구조 해석)

  • Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • 이온산란 분광법(ISS: Ion Scattering Spectroscopy)은 표면 원자의 구조를 러더포드 후방산란법(RBS: Rutherford Backscattering Spectroscopy) 등과 같이 실공간에 대하여 직접 정보를 얻는 방법이다. 그 중에서도 산란각도를 $180^{\circ}$로 고정하여 산란이온 검출기를 설치한 직충돌 이온산란 분광법(ICISS: Impact Collision Ion Scattering Spectroscopy)은 산란된 이온의 궤적이 입사궤도와 거의 동일하기 때문에 산란궤적의 계산이 간단해지고, 최외층 뿐만 아니라 표면에서 수 층 깊이의 원자구조의 해석이 가능하다. 또한 비행시간형(TOF: Time-Of-Flight) 분석기를 채택하여 산란 이온 및 중성원자를 동시에 측정하면 입사 이온의 표면에서의 중성화에 관계 없이 산란 신호를 얻으므로 표면 원자의 결합 특성에 영향 받지 않고 사용할 수 있다. 본고에서는 ICISS의 원리, 장치, 측정방법 등을 소개한 제1편 및 반도체 표면구조, 금속/반도체 계면 등의 해석에 관하여 기술한 제2편에 이어서 세라믹 재료의 표면 원자 구조, 세라믹 박막의 원자 구조, 흡착 기체의 구조, 원소의 편석 등에 관한 연구 사례를 소개하고자 한다.

Structure Analysis of $BaTiO_3$ Film on the MgO(001) Surface by Time-Of-Flight Impact-Collision Ion Scattering Spectroscopy

  • Yeon Hwang;Lee, Tae-Kun;Ryutaro Souda
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.17-17
    • /
    • 2002
  • Time-of-flight impact collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of the epitaxially grown BaTiO₃ layers on the MgO(100) surface. Hetero-epitaxial BaTiO₃ layers can be deposited by the following steps: first thermal evaporation of titanium onto the MgO(100) surface in the atmosphere of oxygen at 400℃, secondly thermal evaporation of barium in the same manner, and finally annealing at 800℃. Well ordered perovskite BaTiO₃ was confirmed from the ICISS spectra and reflection high electron energy diffraction (RHEED) patterns. It was also revealed that BaTiO₃ had cubic structure with the same lattice parameter of bulk phase.

  • PDF