• Title/Summary/Keyword: Ion release

Search Result 204, Processing Time 0.023 seconds

Ion Release and Biocompatibility of Sintered Ni-Cr-Ti Alloy for Dental Prosthodontics (치과보철용 Ni-Cr-Ti소결체합금의 이온용출과 생체적합성)

  • Choe, Han-Cheol;Kim, Seung-Hui
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, ion release and biocompatibility of sintered Ni-Cr-Ti alloy for dental prosthodontics have been researched by corrosion and cell culture test. The microstructures of the alloys were observed by optical microscope, and corrosion behavior was investigated using potentiostat (Model PARSTAT 2273, EG&G, USA). Cell culture was carried out using hGf cell in DMEM (Welgene Inc., South Korea) supplemented with 10% fetal bovine serum (FBS) (Welgene Inc., South Korea) and antibiotic antimycotic solution (Welgene Inc., South Korea). After corrosion and cell culture test, surface morphologies were observed by field-emission scanning electron microscopy. For wettability behaviors, contact angles were measured by wettability test. As the content of Ti increased, the number of pit decreased and the corrosion resistance was improved from anodic polarization test, also, polarization resistance of samples containing Ti remarkably improved as compared with the alloy not containing Ti. The sintered alloy showed a low contact angle due to the pores formed on the surface. The addition of Ti element showed that the cell survival rate was better than that of the control group.

Peroxynitrite Inactivates Carbonic Anhydrase II by Releasing Active Site Zinc Ion

  • Kim, Young-Mi;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.711-714
    • /
    • 2004
  • Peroxynitrite enters erythrocytes through band 3 anion exchanger and oxidizes cytosolic proteins therein. As a protein associated with band 3, carbonic anhydrase II may suffer from peroxynitrite-induced oxidative damages. Esterase activity of carbonic anhydrase II decreased as the concentration of peroxynitrite increased. Neither hydrogen peroxide nor hypochlorite affected the enzyme activity. Inactivation of the enzyme was in parallel with the release of zinc ion, which is a component of the enzyme's active site. SDS-PAGE of peroxynitrite-treated samples showed no indication of fragmentation but non-denaturing PAGE exhibited new bands with lower positive charges. Western analysis demonstrated that nitration of tyrosine residues increased with the peroxynitrite concentration but the sites of nitration could not be determined. Instead MALDI-TOF analysis identified tryptophan-245 as a site of nitration. Such modification of tryptophan residues is responsible for the decrease in tryptophan fluorescence. These results demonstrate that peroxynitrite nitrates tyrosine and tryptophan residues of carbonic anhydrase II without causing fragmentation or dimerization. The peroxynitrite-induced inactivation of the enzyme is primarily due to the release of zinc ion in the enzyme's active site.

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

Investigation on the Removal of Dissolved Aluminum Ion in Drinking Water (정수중(淨水中)의 용존(溶存)알루미늄 제어방안(制御方案)의 조사(調査))

  • Choi, Suing-Il;Kim, Moon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.42-52
    • /
    • 1997
  • The affection of activated carbon on the dissolved aluminum ion in drinking water has been observed. In addition, the aluminum ion removal capability of activated, alumina, chitosan, and ion exchange resin have been investigated. Experimental results indicated that the coal based activated carbon released considerable amount of aluminum ion to the water while coconut shell based activated carbon didn't. However the release was not continuous. Activated alumina didn't show any recognizable removal capability for aluminum ion in water. Particulate chitosan has removed aluminum ion although dissolved chitosan has not. However it need to development a regeneration process for chitosan to be an effective mean for aluminum ion removal. Ion exchange resin showed a reliable aluminum ion removal capability. The ion exchange capacity was 2.63 meq/g resin for the aluminum ion in drinking water.

  • PDF

Evaluation of Exposure Indicators for Plants by Silicon Tetrachloride Release (사염화규소 누출사고지점 주변 식물에 대한 노출지표 평가)

  • Park, Jae-Seon;Kim, Jee-Young;Kim, Myeong-Ock;Park, Hyun-Woo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.288-292
    • /
    • 2017
  • BACKGROUND: Silicon tetrachloride reacts with moisture in the atmosphere to generate hydrogen chloride, which affects the environment. Since silicon tetrachloride and its by-products are dispersed in the atmosphere in a short time after the silicon tetrachloride release into the atmosphere, it is difficult to directly assess the extent of environmental impact. In the present study, the exposure test of silicon tetrachloride or hydrogen chloride was examined in order to establish the criterion of the range affected by the silicon tetrachloride release, and the actual crops in the area exposed to silicon tetrachloride leakage were analyzed. METHODS AND RESULTS: For the experiment of exposure to silicon tetrachloride or hydrogen chloride, the leaves of red-pepper and corn were used in glass sealed containers. In the actual accident area, 59 samples from 10 different kinds of crops were collected. The pretreatment of the sample was performed by freezing and grinding, and then extracted using distilled water. The pH and concentration of chloride ($Cl^-$) ion of the extracted solution were measured using pH meter and ion chromatograph, respectively. CONCLUSION: Exposure to silicon tetrachloride caused visible damage, increasing the concentration of chloride ion, and decreasing the pH as well as hydrochloric acid. In the actual crops of the affected area, the tendency was the same as the result of the laboratory test, and the range of influence could be estimated through the concentration of $Cl^-$ ion over 2,000 mg/kg, and the correlation evaluation between the concentration of $Cl^-$ and pH. Therefore, the concentration of $Cl^-$ ion and the correlation between $Cl^-$ and pH would be considered as the factors to estimate the influence range of silicon tetrachloride release.

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

Development of Sustained Release Microcapsules Containing Ion Exchange Resin-Dextromethorphan Hydrobromide Complex (이온교환수지 - 브롬화수소산덱스트로메토르판 복합체의 서방성 마이크로캅셀 개발에 관한 연구)

  • Kim, Chong-Kook;Hwang, Su-Won;Hwang, Sung-Joo;Lah, Woon-Lyong
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 1989
  • In order to develop a pediatric liquid preparation with sustained release properties, dextromethorphan hydrobromide (DEXT) was complexed with strong cation exchange resin (CG 120) and the-complex was coated with Eudragit RS using a phase separation method by non-solvent addition. The effect of pH, ionic strength of the release medium and drug/resin ratio on the release rate of DEXT was studied. The release rate of free drug from the uncoated complex, and coated complexes with 9.5 and 18.5% Eudragit RS in artificial gastric juice were measured. The release rate from the uncoated complex was faster with higher pH, higher ionic strength of the release medium and higher drug/resin ratio. The release rate from the coated complex could be controlled by the amount of coating material, and the surface after release did not rupture into.

  • PDF

A STUDY OF ION BEAM ASSISTED DEPOSITION(IBAD) OF TiN ON Ni-Cr Be ALLOY FOR SURFACE CHARACTERISTIC (이온빔 보조 증착법에 의한 TiN 박막도포가 니켈-크롬-베릴륨 합금의 표면 성상에 미치는 영향에 관한 연구)

  • Choi, Soo-Young;Lee, Sun-Hyung;Chang, Ik-Tae;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.212-234
    • /
    • 1999
  • Dental restorative materials must have the physical properties to withstand wear and corrosion. Base metal alloys possess better mechanical properties and lower price than the gold alloys. For these reasons such alloys have largely replaced the precious metal alloys. One aspect to con-sider is the release of metal substances to oral environment. The release of elements from dental alloys is a continuing concern because the elements may have the potentially harmful biological effects on local tissues. The purpose of this study was to minimize metal release on the nonprecious metal surfaces by ion beam assisted deposition(IBAD) of titanium nitride (TiN) Ni-Cr-Be alloys with and without TiN coatings were secured in an wear test machine opposing ruby ball to determine their relative resistance to wear with loom, 200m, 300m and 400m sliding distance. And the corrosion behavior of the Ni-Cr-Be alloys with and without TiN coatings and 3 dental noble alloys have been studied. Potentiodynamic curves were used to analyse the corrosion characteristics of the alloys. The measurement of the released Ni and Cr ions was conducted by analysis of the electrolyte solution with atomic absorption spectroscopy. The results were as follows : 1. The critical sliding distance that wore down TiN coatings of $2.5{\mu}m$ thickness in this study condition was 300m. 2. Ion beam assisted deposition of TiN showed a good surface modification with respect to the properties of wear and corrosion resistance. 3. X-ray diffraction showed that the strongest peak of TiN is TiN(111) in the coatings. 4. The release of Ni and Cr ions from alloys measured by means of atomic absorption spectroscopy was reduced by ion beam assisted deposition of TiN.

  • PDF

Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant (질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향)

  • Byeon, Eung-Seon;Kim, Dong-Su;Lee, Gu-Hyeon;Jeong, Yong-Su
    • 연구논문집
    • /
    • s.30
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF

Effect of Ruthenium Red and Ryanodine on Calcium Ion Metabolism in Oocyte and Early Embryo of Mouse (생쥐의 난자와 초기배아의 칼슘이온 대사에 미치는 Ruthenium Red와 Ryanodine의 영향)

  • Lee Joon Yeong;Hong Soon Cap;Kim Tae Sik;Min Byeong Yeol;Kim Haekwon;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.95-103
    • /
    • 2003
  • Intracellular calcium is an important physiological factor in most cells, and ruthenium red and ryanodine play an important role as calcium modulators. Ruthenium red inhibits calcium-induced calcium release(CICR) from the intracellular calcium store. Ryanodine activates calcium release through ryanodine channel. The present experiment was performed to investigate the effects of two modulators on calcium ion metabolism and to determine their dose-dependency in oocyte and early embryo of mouse. Intracellular calcium ion concentration was measured in realtime by using confocal laser scanning microscope(CLSM) after loading of Fluo-3/AM in mouse oocytes and early embryos. Ruthenium red decreased intracellular calcium ion concentration in oocytes and early embryos at its high concentration(30, 300 $\mu$M). Ryanodine increased intracellular calcium ion concentration in oocytes and early embryos in low concentration(0.01 $\mu$M) but decreased that at higher concentrations(1, 10 $\mu$M). These results indicate that two modulators affected calcium ion metabolism in oocyte and early embryo of mouse, and their dose-dependency was different from somatic cell including myocytes.

  • PDF