• 제목/요약/키워드: Ion oxide

검색결과 1,042건 처리시간 0.031초

금속이온교환 제올라이트 촉매상에서 메탄을 이용한 산소과잉 배출가스중의 NO 제거 (Catalytic Removal of Nitric Oxide in Oxygen-Rich Exhaust with Methane over Metal Ion-Exchanged Zeolites)

  • 김상환;박정규
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.32-44
    • /
    • 2002
  • Selective catalytic reduction of nitric oxide by methane in the presence of excess oxygen was investigated over copper and cobalt ion-exchanged ZSM-5 zeolites. Copper ion-exchanged ZSM-5(Cu-ZSM-5) has the limitations for commercial applications to lean-bum gasoline and diesel engines due to low thermal stability and resistance to water vapor and sulfur dioxide. But cobalt ion-exchanged ESM-5(Co-ZSM-5) is more active at high temperatures and also stable to water vapor and sulfur dioxide for catalytic reduction of nitric oxide by methane. The catalytic activity of Cu-ZSM-5 for NO reduction increases with increasing temperatures, reaches the maximum conversion of 23.0% at 350\"C. and then decreases with higher temperatures. In the meantime catalytic activities of Co-ZSM-5 show the maximum conversion of 25.8% at $500^{\circ}C$ Therefore Co-ZSM-5 catalysts have higher thermal stability at high temperatures. Catalytic activities of both zeolites were remarkably enhanced with the existence of oxygen in the exhaust. It is noted that the catalytic activity of Cu-ZSM-5 decreases with the increasing concentration of methane while the catalytic activity of Co-ZSM-5 decreases with increasing contents of methane in the exhaust. This may imply the existence of different paths of NO reduction by methane in the presence of excess oxygen fur Cu-ZSM-5 and Co-ZSM-5 catalysts. For binary metal ionexchanged ZSM-5, the primary ion-exchanged metal may be masked by secondary ion-exchanged component, which plays the important role for catalytic activities of binary metal ion-exchanged ZSM-5, Therefore CuCo-ZSM-5 catalysts show the similar volcano-shaped curves to Cu-ZSM-5 catalysts between the activity and temperature. It Is interesting that the activities of CoCu-ZSM-5 catalysts indicate almost no dependence on the concentration of methane in the exhaust.aust.

Deposition of Indium Tin Oxide films on Polycarbonate substrates by Ion-Assisted deposition (IAD)

  • Cho, Jn-sik;Han, Young-Gun;Park, Sung-Chang;Yoon, Ki-Hyun;Koh, Seok-Keun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.98-98
    • /
    • 1999
  • Highly transparent and conducting tin-doped indium oxide (ITO) films were deposited on polycarbonate substrate by ion-assited deposition. Low substrate temperature (<10$0^{\circ}C$) was maintained during deposition to prevent the polycarbonate substrate from be deformed. The influence of ion beam energy, ion current density, and tin doping, on the structural, electrical and optical properties of deposited films was investigated. Indium oxide and tin-doped indium oxide (9 wt% SnO2) sources were evaporated with assisting ionized oxygen in high vacuum chamber at a pressure of 2$\times$10-5 torr and deposition temperature was varied from room temperature to 10$0^{\circ}C$. Oxygen gas was ionized and accelerated by cold hallow-cathode type ion gun at oxygen flow rate of 1 sccm(ml/min). Ion bea potential and ion current of oxygen ions was changed from 0 to 700 V and from 0.54 to 1.62 $\mu$A. The change of microstructure of deposited films was examined by XRD and SEM. The electrical resistivity and optical transmittance were measured by four-point porbe and conventional spectrophotometer. From the results of spectrophotometer, both the refractive index and the extinction coefficient were derived.

  • PDF

카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구 (Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide)

  • 이진혁;배종우;김정수;윤유미;조남주
    • Elastomers and Composites
    • /
    • 제48권3호
    • /
    • pp.225-231
    • /
    • 2013
  • 본 연구에서는 carboxylated SBR latex와 zinc oxide가 SBS 복합재의 내마모성과 debris 특성 개선에 미치는 영향을 관찰하였다. 실리카를 첨가한 SBS 복합재는 실리카 입자간의 수소 결합에 의한 강한 filler-filler interaction으로 인한 낮은 분산성 때문에 기계적 강도, NBS 내마모성, debris 특성이 전체적으로 감소하는 것으로 나타났다. carboxylated SBR latex를 첨가한 SBS 복합재는 carboxyl group과 실리카의 silanol group간의 결합을 통하여 filler-filler interaction이 감소하고 실리카의 분산성이 증가하기 때문에 기계적 강도, NBS 내마모성, debris 특성이 향상되는 것을 확인 하였다. carboxylated SBR latex와 zinc oxide를 동시에 첨가한 경우, carboxyl group에 의한 실리카의 분산성 향상과 더불어 zinc ion과 carboxyl group간의 ion cluster 형성을 통하여 물성이 크게 증가하였다. Zinc ion과 carboxyl group간의 ion cluster 형성은 $1550{\sim}1650cm^{-1}$의 zinc carboxylate group stretch 피크의 FT-IR 분석 결과로 확인하였다. carboxylated SBR latex와 zinc oxide를 첨가한(SC-4) 복합재의 경우, 인장강도 $156kgf/cm^2$, 신장율 936%, 인열강도 59.4kgf/cm의 우수한 기계적 강도를 나타내었으며, NBS 내마모성은 338%로 가장 우수한 특성을 나타내었다. 또한, 표면 마찰 시에 debris 발생 역시 크게 감소하며, 표면 마찰 저항의 증가로 파도 형태의 마모 특성을 나타내었다.

Nanowire-Like Copper Oxide Grown on Porous Copper, a Promising Anode Material for Lithium-Ion Battery

  • Park, Hyeji;Lee, Sukyung;Jo, Minsang;Park, Sanghyuk;Kwon, Kyungjung;Shobana, M.K.;Choe, Heeman
    • 한국세라믹학회지
    • /
    • 제54권5호
    • /
    • pp.438-442
    • /
    • 2017
  • This paper reports the facile synthesis of microlamella-structured porous copper (Cu)-oxide-based electrode and its potential application as an advanced anode material for lithium-ion batteries (LIBs). Nanowire-like Cu oxide, which is created by a simple thermal oxidation process, is radially and uniformly formed on the entire surface of Cu foam that has been fabricated using a combination of water-based slurry freezing and sintering (freeze casting). Compared to the Cu foil with a Cu oxide layer grown under the same processing conditions, the Cu foam anode with 63% porosity exhibits over twice as much capacity as the Cu foil (264.2 vs. 131.1 mAh/g at 0.2 C), confirming its potential for use as an anode electrode for LIBs.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

3차원 이온 주입 시뮬레이터 개발에 관한 연구 (A Study of Three Dimensional Ion Implantation Simulator)

  • 송재복;원태영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 1996
  • We developed three dimensional Monte carlo ion implantation simulator which simulate distributions of impurities under the ion implantation on the tilted multi-layered layer. Our simulation reveals three dimensional shadow effect and sidewall scattering effect due to the geometrical shapes. For the evaluation of the developed three dimensional Monte carlo ion implantation simulator, calculations with 100,000 ions have been performed for the island and hole structures with a thin oxide of 100$\AA$ and nitride of 2000$\AA$. The simulation results showed that the distribution of ion decreases near the conner of the hole structure covered with a nitride layer and increases near the conner for the island structure open to oxide. Moreover, three dimensional distributions of ions were obtained with varying incident energy, tilt and rotation angle, mask depth and three-dimensional structure geometry.

  • PDF

비이온성 계면활성제의 미셀 콜로이드에 의한 $Ca^{2+}$의 은폐에 대한 연구 (The Study for the Sequestration of $Ca^{2+}$ by the Micelle Colloid of Nonionic Sunactants)

  • 권오윤;백우현
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.69-76
    • /
    • 1992
  • The effects of $Ca_{2+}$ ion on the formation of micelle colloid of nonionic surfactants, nonylphenol-(ethylene oxide)n [NP-(EO)n: n= 11, 40, 100) were investigated by the iodine solubilization method. The characteristics of spectra depended on the concentration of $Ca_{2+}$ ion and the number of EO unit. Above CMC(critical micelle concentration), the intensity of the CT (charge transfer) band by the addition of $Ca_{2+}$ ion for the NP-(EO)11 and NP-(EO)40 increased and when decreased and for the NP-(EO)In continuously increased. The increase in the intensity of CT band were attributed to the compactness of micelle in the presence of $Ca_{2+}$ ion. These phenomena may be explained by the fact that the linear ethylene oxide (EO) chain, relatively free to assume various configuration in aqueous solution, could form a pseudo-crown ether structures capable of forming complexes with $Ca_{2+}$ ion.

  • PDF

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.