• Title/Summary/Keyword: Ion irradiation hardening

Search Result 10, Processing Time 0.025 seconds

Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting (Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성)

  • Joowon Suh;Sangyeob Lim;Hyung-Ha Jin;Young-Bum Chun;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation

  • Liu, Kai;Long, Xiangyun;Li, Bochuan;Xiao, Xiazi;Jiang, Chao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2960-2967
    • /
    • 2021
  • In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.

The Studies of Irradiation Hardening of Stainless Steel Reactor Internals under Proton and Xenon Irradiation

  • Xu, Chaoliang;Zhang, Lu;Qian, Wangjie;Mei, Jinna;Liu, Xiangbing
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.758-764
    • /
    • 2016
  • Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

Simulation of the irradiation effect on hardness of Chinese HTGR A508-3 steels with CPFEM

  • Nie, Junfeng;Lin, Pandong;Liu, Yunpeng;Zhang, Haiquan;Wang, Xin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1970-1977
    • /
    • 2019
  • Understanding the irradiation hardening effect of structural steels under various irradiation conditions plays an important role in developing advanced nuclear systems. Such being the case, a crystal plasticity model for body-centered cubic (BCC) crystal based on the density of dislocations and irradiation defects is summarized and numerically implemented in this paper. Based on this model, nano-indentation hardness of Chinese A508-3 steels with ion irradiation is calculated. Very good agreement is observed between simulation and experimental data of several different irradiation doses subjected to various operating temperatures, from which, it can be concluded that indentation hardness increases with increasing irradiation dose at both room temperature and high temperature. Consequently, the validity of this model has been proved properly, and furthermore, the model established in this paper could guide the study of irradiation hardening effect and temperature effect to some extent.

Effect of irradiation temperature on the nanoindentation behavior of P92 steel with thermomechanical treatment

  • Huang, Xi;Shen, Yinzhong;Li, Qingshan;Li, Xiaoyan;Zhan, Zixiong;Li, Guang;Li, Zhenhe
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2408-2417
    • /
    • 2022
  • The nanoindentation behavior of P92 steel with thermomechanical treatment under 3.5 MeV Fe13+ ion irradiation at room temperature, 400 and 700 ℃ was investigated. Pop-in behavior is observed for all the samples with and without irradiation at room temperature, while the temperature dependence of pop-in behavior is only observed in irradiated samples. The average load and penetration depth at the onset of pop-in increase as the irradiation temperature increases, in line with the results of the maximum shear stress. Irradiation induced hardening is exhibited for all irradiated samples, but there is a significant reduction in the hardness of sample irradiated at 700 ℃ in comparison to the samples irradiated at room temperature and 400 ℃. The ratio of hardness to elastic modulus for all samples decreases with increasing penetration depth except for samples at 700 ℃. With the increasing of irradiation temperature, the ratio of the irreversible work to the total work gradually decreases. In contrast, it increases for samples without irradiation.

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.

Laser Direct Patterning of Photoresist Layer for Halftone Dots of Gravure Printing Roll (그라비아 인쇄물의 망점 형성을 위한 포토레지스터 코팅층의 레이저 직접 페터닝)

  • Seo, Jung;Lee, Je-Hoon;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 2000
  • Laser direct patterning of the coated photoresit (PMER-NSG31B) layer was studied to make halftone dots on gravure printing roll. The selective laser hardening of photoresist by Ar-ion laser(wavelength : 333.6nm∼363.8nm) was controlled by the A/O modulator. The coating thickness in the range of 5㎛∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines formed under laser power of 200∼260㎽ and irradiation time of 4.4∼6.6$\mu$ sec/point were investigated after developing. The hardened width increased according to the increase of coating thickness. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line widths of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

  • PDF

Gravure Halftone Dots by Laser Direct Patterning

  • Jeong Suh;Lee, Jae-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • Laser direct patterning of the coated photoresist (PMER-NSG31B) layer was studied to make halftone dots on the gravure printing roll. The selective laser hardening of the photoresist by Ar-ion laser(wavelength: 333.6∼363.8 nm) was controlled by the A/O modulator. The coating thickness in the range of 5∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines farmed under the laser power of 200∼260mW and irradiation time of 4.4∼6.6 $\mu$ sec/point were investigated after developing. The hardened width increased as the coating thickness increased. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line width of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

Dosimetric Characteristics of Dynamic Wedge Technique (Dynamic Wedge의 조직내 방사선량 분포의 특성)

  • Oh Young Taek;Keum Ki Chang;Chu Seong Sil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.323-332
    • /
    • 1996
  • Purpose : The wedge filter is the most commonly used beam modifying device during radiation therapy Recently dynamic wedge technique is available through the computer controlled asymmetric collimator, independent jaw. But dosimetric characteristics of dynamic wedge technique is not well known. Therefore we evaluate dosimetric characteristics of dynamic wedge compared to conventional fixed wedge. Materials and Methods : We evaluated dosimetric characteristics of dynamic wedge and fixed wedge by ion chamber, film dosimetry and TLD in phantoms such as water, polystyrene and average breast phantom. Six MV x-ray was used in $15{\times}15cm$ field with 15,30 and 45 degree wedge of dynamic/liked wedge system, Dosimeric characteristics are interpreted by Wellhofer Dosimetrie system WP700/WP700i and contralateral breast dose (CBD) with tangential technique was confirmed by TLD. Results : 1) Percent depth dose through the dynamic wedge technique in tissue equivalent phantom was similar to open field irradiation and there was no beam hardening effect compared to fixed wedge technique. 2) Isodose line composing wedge angle of dynamic wedge is more straight than hard wedge. And dynamic wedge technique was able to make any wedge angle on any depth and field size. 3) The contralateral breast dose in primary breast irradiation was reduced by dynamic wedge technique compared to fixed wedge. When the dynamic wedge technique was applied, the scatter dose was similar to that of open field irradiation. Conclusion : The dynamic wedge technique was superior to fixed wedge technique in dosimetric characteristics and may be more useful in the future.

  • PDF

Gravure Halftone Dots by Laser Direct Patterning (레이저 직접 패터닝에 의한 그라비아 망점 형성)

  • Suh, Jeong;Han, You-Hie;Kang, Lae-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.191-198
    • /
    • 2000
  • Laser direct patterning of the coated photoresist (PMER-NSG31B) layer was studied to make halftone dots on gravure printing roll. The selective laser hardening of photoresist by Ar-ion laser(wavelength: 333.6~363.8nm) was controlled by the A/O modulator. The coating thickness in the range of 5~11$\mu m$ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines formed under the laser power of 200~260㎽ and irradiation time of 4.4~6.6 $\mu$sec/point were investigated after developing. The hardened width increased as the coating thickness increased. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line widths of 10$\mu m$ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6$\mu m$ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

  • PDF