• Title/Summary/Keyword: Ion in aqueous solution

Search Result 500, Processing Time 0.025 seconds

Evaluation of Water Softening with the Removal of Calcium Ion by Ion Flotation Approach

  • Mafi, Azadeh;Khayati, Gholam
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.219-224
    • /
    • 2021
  • Ion flotation is an efficient method to remove metal ions from aqueous solution. In this work, ion flotation was applied to calcium removal from aqueous solution. The parameters used included sodium stearate (SS) and sodium dodecyl sulfate (SDS) as collectors, 1-butanol and 1-propanol as frothers, pH, and air-flow rate. An L16 orthogonal array was chosen according to the mentioned factors and levels, and experimental tests were conducted according to the Taguchi orthogonal array. The results showed that all of the factors except one had significant effect on the flotation performance. The percentage contribution of parameters showed that type of frother and type of collector made the greatest (43.14%) and the lowest (9.86%) contribution, respectively. In optimal conditions, the recovery of Ca (II) ion was 45.67%. Also, the results illustrated that the Taguchi method could predict calcium removal from aqueous solution by ion flotation with 2.63%. This study showed that the use of ion flotation was an effective method for Ca (II) ion removal from aqueous solution.

Removal Characteristics of Cu(II) ion in Aqueous Solution by Solid-Phase Extractant Immobilized D2EHPA and TBP in PVC (D2EHPA와 TBP를 PVC에 고정화한 고체상 추출제를 사용한 수용액 중의 Cu(II) 이온 제거특성)

  • Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.

Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO (TTA와 TOPO를 이용한 수용액 중의 리튬이온 용매추출)

  • Lee, Jeon-Kyu;Jeong, Sang-Gu;Koo, Su-Jin;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • For the purpose of development of the extraction process of lithium ion from concentrated water eliminated from desalination process, an experimental research on the solvent extraction of lithium ion from aqueous solutions was performed. The effects of operating parameters, such as concentration of extractant, ratio of extracting solution/aqueous solution, pH of aqueous solution, were examined. The effect of sodium chloride, the major component of sea water, was also examined. Lithium ion in aqueous solutions of pH=10.2~10.6 adjusted by ammonia solution was most effectively extracted by extracting solution composed of 0.02 M TTA and 0.04 M TOPO in kerosine. The addition of sodium chloride in lithium aqueous solution significantly interfered the extraction of lithium ion.

Transport of Zinc Ion in a Contained Liquid Membrane Permeator with Two Micro-Porous Films (지지막을 이용하는 액막 추출기 내에서 아연 이온의 이동)

  • 주창식;이석희;이민규;홍성수;하홍두;정석기
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • For the purpose of development of a liquid membrane permeator which separates metal ions from aqueous solutions continuously and effectively, a continuous membrane permeator with the membrane solution trapped between extraction and stripping phases by two micro-porous hydrophilic films was manufactured. Experimental researches on the separation of zinc ion from aqueous solutions were performed in the liquid membrane permeator with 30 vol % D2EHPA solution in kerosine as liquid membrane. As results, the liquid membrane permeator separates zinc ion from aqueous solutions continuously and effectively in the wide range of operating conditions. A simple mass transfer rate model using equilibrium constant of the extraction reaction for the system used were proposed, and the model was compared with experimental results of separation of zinc ion in the permeator. And the effects of operating factors, such as space time, pH of extraction solution, extraction temperature, on the separation rate of zinc ion in the permeator were experimentally examined.

  • PDF

A Study on the Flaking Mechanism of Glass (유리의 Flaking 생성기구에 관한 기구)

  • 김명석;심명재;김정환;이기강
    • Korean Journal of Crystallography
    • /
    • v.11 no.4
    • /
    • pp.224-230
    • /
    • 2000
  • We have been investigated the flaking mechanism of the soda-line glass. The pH of aqueous solution approached to 10 and increased with reaction time by ion exchange reaction between Na/sup +/ ion of glass and H/sup +/ ion of aqueous solution under the conditions of below pH 9 of start solution. The relationship between the pH of solution and reaction time shows logarithm. Total dissolution reaction of glass components by OH/sup -/ ion in aqueous seems to be dominant after the pH solution reached to 10 and the dissolution rate linearly increased with reaction time. The above tow reactions are simultaneously occurred. The dissolved Ca/sup 2+/ ions are reprecipitated on the glass surface to Ca-compound. The flakes are formed by the separation of leached layer of glass due to the different thermal expansion coefficient.

  • PDF

The Adsorption of Phosphate Son Using Hydroxyapatite synthesized by Wastewater Sludge of Semiconductor Fabrication Process (반도체 제조공정의 폐수슬러지로 합성된 Hydroxyapatite를 이용한 인산이온의 흡착)

  • 강전택;정기호;신학기
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.257-262
    • /
    • 2002
  • The hydroxyapatite(HAp) for the present study was prepared with the wastewater sludge from semiconductor fabrication process and it was crystallized in an electric furnace for 30 min at 90$0^{\circ}C$. The adsorption characteristics of HAp for phosphate ion in aqueous solution has been investigated. The adsorbed ratio of phosphate ion for HAp were investigated according to the reaction time, amount of HAp, concentration of standard solution, pH of solution, and influence of concomitant ions. The amount of adsorbed phosphate ion decreased with the increase of pH due to the mutual electrostatic repulsion between adsorbed phosphate ions and competitive adsorption between phosphate ion and OH- ion in aqueous solution. The maxium amount of the adsorption equilibrium for phosphate ion was about 24 mg/g of HAp. The HAp would likely to be a possible adsorbent for the removal of phosphate ion in the waste water.

The Removal of Heavy Metals in Aqueous Solution by Hydroxyapatite (Apatite를 이용한 중금속 제거)

  • 강전택;정기호
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.325-330
    • /
    • 2000
  • The hydroxyapatite (HAp) for the present study was prepared by precipitation method in semiconductor fabrication and the crystallized at ambient to 95$0^{\circ}C$ for 30min in electric furnace. The ion-exchange characteristics of HAp for various heavy metal ions such as $Cd^{2+}, Cu^{2+}, Mn^{2+}, Zn^{2+}, Fe^{2+}, Pb^{2+}, Al^{3+}, and Cr^{6+}$ in aqueous solution has been investigated. The removal ratio of various metal ions for HAp were investigated with regard to reaction time, concentration of standard solution, amount of HAp and pH of solution. The order of the ions exchanged amount was as follws: $Pb^{2+}, Fe^{3+}>Cu^{2+}>Zn^{2+}>Al^{3+}>Cd^{2+}>Mn^{2+}>Cr^{6+}. The Pb^{2+}$ ion was readily removed by the Hap, even in the strongly acidic region. The maximum amount of the ion-exchange equilibrium for $Pb^{2+}$ ion was about 45 mg/gram of HAp. The HAp would seem to be possible agent for the removal of heavy metal ions in waste water by recycling of waste sludge in semiconductor fabrication.

  • PDF

Evaluation of Chloride Ion Binding Capacity of Hardened Portland Cement Paste Containing Hydrotalcite (경화된 하이드로탈사이트 혼입 포틀랜드 시멘트 페이스트의 염소이온 고정능력 평가)

  • Han, Jae-Do;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.27-28
    • /
    • 2018
  • Deterioration of reinforced concrete structures due to salt corrosion is a phenomenon that can be easily seen, and the main reason for deterioration is chloride ion. Therefore, researches are actively conducted to control chlorine ion penetration worldwide. The purpose of this study is to evaluate the chloride ion fixation capacity of Portland cement paste containing Hydrotalcite. For this purpose, cement paste containing 0%, 2.5%, and 5% of Hydrotalcite was sealed and cured for 28 days, and the cured cement paste was crushed. Chloride ion solution was prepared at a concentration of 0.5M using NaCl, and the powdered cement paste was reacted for a specific time in aqueous chloride ion solution. After the reaction, the concentration of the chloride ion aqueous solution was measured using a silver nitrate potentiometric titrator, and the reacted cement paste was analyzed using XRD and FT-IR.

  • PDF

A Study on the Complexation of Copper(Ⅱ) Ion with 2,2-Bis(hydroxymethyl)-2,$2^{\prime},2^{\prime}^{\prime}$-nitrilotriethanol in Aqueous Solution

  • Hong, Gyeong Hui;Ha, Eun Jong;Bae, Gyu Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.406-409
    • /
    • 1995
  • The complex formation from Cu(Ⅱ) ion and 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol (Bistris) in aqueous solution has been studied potentiometrically and spectrophotometrically. Bistris (L) coordinates to Cu(Ⅱ) as tridentate. The complex CuL2+ undergoes deprotonation in neutral and basic media. The deprotonated complexes involve metal-alcoholate coordinate bond in stable chelate structures.

EFFECT OF THE WATER-WALL INTERACTION POTENTIALS ON THE PROPERTIES OF AQUEOUS SOLUTIONS CONFINED WITHIN A UNIFORMLY CHARGED NANO-CHANNEL

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.368-376
    • /
    • 2009
  • Studies on the effect of the wall-ion, wall-water, water-ion and ion-ion interaction on properties of water and ions in nano-channels have been performed through the use of different kinds of ions or different models of potential energy between wall-ion or wall-water. On this paper, we address the effect of water-wall interaction potential on the properties of confined aqueous solution by using the molecular dynamics (MD) simulations. As the interaction potential energies between water and wall we employed the models of the Weeks-Chandler-Andersen (WCA) and Lennard-Jones (LJ). On the MD simulations, 680 water molecules and 20 ions are included between uniformly charged plates that are separated by 2.6 nm. The water molecules are modeled by using the rigid SPC/E model (simple point charge/Extended) and the ions by the charged Lennard-Jones particle model. We compared the results obtained by using WCA potential with those by LJ potential. We also compared the results (e.g. ion density and electro-static potential distributions) in each of the above cases with those provided by solving the Poisson-Boltzmann equation.

  • PDF