• Title/Summary/Keyword: Ion beam method

Search Result 411, Processing Time 0.024 seconds

A study on cytocompatibility of ion beam-irradiated chitosan sponges (이온 빔 조사 처리된 키토산 스펀지의 세포적합도에 관한 연구)

  • Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.281-291
    • /
    • 1998
  • Chitosan is a biodegradable and non-toxic material with a molecular weight of 800-1,500Kd which can be obtained in various forms with extraordinary chemical structures and biological characteristics of which enables it to be used in many fields as a biomaterial. Ion irradiation is a useful tool to modify chemical structures and physical properties of high molecular weight polymers. The basic hypothesis of this study is that when surface properties of chitosan in a sponge form are modified with ion beam-irradiation and cell adhesion properties of chitosan would improve and thereby increase the regenerative ability of the damaged bone. The purpose of this study was to illuminate the changes in the cytocompatibility of chitosan sponges after ion beam-irradiation as a preliminary research. Argon($Ar^+$) ions were irradiated at doses of $5{\times}10^{13}$, $5{\times}10^{15}$ at 35 keV on surfaces of each sponges. Cell adhesion and activity of alkaline phosphatases were studied using rat fetal osteoblasts. The results of this study show hat ion beam-irradiation at optimal doses($5{\times}10^^{13}\;Ar^+\;ion/cm^2$) is a useful method to improve cytocompatibility without sacrificing cell viability and any changing cell phenotypes. These results show that ion beam-irradiated chitosan sponges can be further applied as carriers in tissue engineering and as bone filling materials.

  • PDF

Measurement of secondary electron emission coefficient(${\gamma}$) with oblique low energy ion and work function ${\phi}_{\omega}$ of theMgO thin film in AC-PDPs

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jung, K.B.;Jeon, W.;Cho, G.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.507-510
    • /
    • 2004
  • Oblique ion-induced secondary electron emission coefficient(${\gamma}$) with low energy ..and work function ${\phi}_{\omega}$(${\theta}$ = 0 and ${\theta}$ = 20) of the MgO thin film in AC-PDPs has been measured by ${\gamma}$-FIB system. The MgO thin film has been deposited from sintered material under electron beam evaporation method. The energy of $He^+$ ions used has been ranged from 50eV to 150eV. Oblique ion beam has been chosen to be 10 degree, 20 degree and 30 degree. It is found that the higher secondary electron emission coefficient(${\gamma}$) has been achieved by the higher oblique ion beam up to inclination angle of 30 degree than the perpendicular incident ion beam.

  • PDF

Room-Temperature Luminescence from Ion Beam or Atmospheric Pressure Plasma-Treated SrTiO3

  • Song, J.H.;Choi, J.M.;Cho, M.H.;Choi, E.J.;Kim, J.;Song, J.H.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.261-264
    • /
    • 2014
  • $SrTiO_3$ (STO) single crystal irradiated with a 3-MeV proton beam exhibits blue and green mixed luminescence. However, the same proton beam when used to irradiate STO with a very thin layer of deposited Pt does not show any luminescence. This Pt layer prevents any damage which may otherwise be caused by arcing, which stems from the accumulated surface voltage of tens of kV due to the charge induced by secondary electrons on the surface of the insulator during the ion beam irradiation process. Hence, the luminescence of ion-irradiated STO originates from the modification of the STO surface layer caused by arcing rather than from any direct ion beam irradiation effect. STO treated with atmospheric-pressure plasma, a simple and cost-effective method, also exhibits the same type of blue and green mixed luminescence as STO treated with an ion beam, as the plasma also creates a layer of surface damage due to arcing.

Performance of Beam Extractions for the KSTAR Neutral Beam Injector

  • Chang, D.H.;Jeong, S.H.;Kim, T.S.;Lee, K.W.;In, S.R.;Jin, J.T.;Chang, D.S.;Oh, B.H.;Bae, Y.S.;Kim, J.S.;Cho, W.;Park, H.T.;Park, Y.M.;Yang, H.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.240-240
    • /
    • 2011
  • The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. A first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR core plasmas. Performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a JAEA magnetic bucket plasma generator with multi-pole cusp fields and a set of KAERI prototype-III tetrode accelerators with circular apertures. The inner volume of plasma generator and accelerator column in the LPIS-1 is approximately 123 liters. Final design requirements for the ion source were a 120 kV/ 65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called as an arc-beam extraction method. A stable ion beam extraction of LPIS-1 has been achieved up to an 100 kV/42 A for a 4 s pulse length and an 80 kV/25 A for a 14 s pulse length. Optimum beam perveance of 1.21 microperv has been found at an accelerating voltage of 80 kV. Neutralization efficiency has been measured by using a water flow calorimetry (WFC) method of calorimeter and an operation of bending magnet. The full-energy species of ion beams have been detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6~1.1 A/kW depending on the operating conditions of arc discharge.

  • PDF

Electro-Optical Characteristics of the Ion-Beam-Aligned FFS-LCD on a Diamond-like-Carbon Thin Film

  • Hwang, J.Y.;Park, C.J.;Seo, D.S.;Jeong, Y.H.;Kim, K.C.;Ahn, H.J.;Baik, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1132-1136
    • /
    • 2004
  • In this paper, we intend to make FFS mode cell with LC alignment used non-rubbing method, ion beam alignment method on the a-C:H thin film, to analyze electro-optical characteristics in this cell. We studied on the suitable inorganic thin film for FFS-LCD and the aligning capabilities of nematic liquid crystal (NLC) using the new alignment material of a-C:H thin film as working gas at rf bias condition. A high pretilt angle of about 5$^{\circ}$ by ion beam(IB) exposure on the a-C:H thin film surface was measured. An excellent voltage-transmittance (V-T) and response time curve of the ion-beam-aligned FFS-LCD was observed with oblique ion beam exposure on the DLC thin films.

  • PDF

Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method (이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조)

  • Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.

Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

  • Wei, Shaoqing;Zhang, Zhan;Lee, Sangjin;Kim, Do Gyun;Kim, Jang Youl
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.40-43
    • /
    • 2016
  • Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in $Opera^{TM}$. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With $Opera^{TM}$ and $Matlab^{TM}$ programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.

Control of Tilt Angle on Homeotropic Polyimide Surface by Ion Beam Alignment (이온빔 배향을 이용한 수직 폴리이미드 표면에서의 틸트 각 제어)

  • Kang, Dong-Hun;Kim, Byoung-Yong;Kim, Sang-Hoon;Hwang, Jeoung-Yeon;Han, Jin-Woo;Kim, Jong-Hwan;Kang, Hee-Jin;Ok, Chul-Ho;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.288-289
    • /
    • 2006
  • The tilt angle generation of nematic liquid crystal(NLC) on the homeotropic polyimide(PI) surface by the new Ion beam alignment method is studied. The tilt angle of NLC on the homeotropic PI surface for all incident angle is about 38and this has a stabilization trend. And the good LC alignment of the NLC on the PI surface by ion beam exposure of 45Incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface by ion beam exposure of 45Incident angle had a tendency to decrease as ion beam energy density increase. So we had known that pretilit angle could be controlled from verticality to horizontality.

  • PDF

keV SURFACE MODIFICATION AND THIN FILM GROWTH

  • Koh, Seok-Keun;Choi, Won-Kook;Youn, Young-Soo;Song, Seok-Kyun;Cho, Jun-Sik;Kim, Ki-Hwan;Jung, Hyung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.95-99
    • /
    • 1995
  • keV ion beam irradiatin for surface modification and thin film growth have been discussed. keV ion beam irradiation in reactive gas environment has been developed for improving wettability of polymer, and for enhancing adhesion to metal film, and adventages of the method have been reviewed. An epitaxial Cu film on Si(100) substrate has been grown by ionized cluster beam and changes of crystallinity and surface roughness have been discussed. Stoichiometric $SnO_2$ films on Si(100) and glass have been grown by a hybrid ion beam Deposition(2 metal ion sources+1 gas ion source), and nonstoichiometric $SnO_2$ films are controlled by various deposition conditions in the HIB. Surface modification for polymer by kev ion irradiation have been developed. Wetting angle of water to PC has been changed from 68 degree to 49 degree with $Ar^+$ irradiation and to 8 degree with $Ar^+$ irradiation and the oxygen environment. Change of surface phenomena in a keV ion beam and characteristics of the grown films are suggested.

  • PDF

THE NEW TYPE BROAD BEAM ION SOURCES AND APPLICATIONS

  • You, D.W.;Feng, Y.C.;Wang, Y.;Kuang, Y.Z.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.131-138
    • /
    • 1995
  • The broad beam ion sources of hot filament plasma type have widely used for modifications of materials and thin films, and the new type intensive current broad beam metal ion source including reactive gaseous ion beams is needed for preparing the hard coating films such as DLC, $\beta-C_3N_4$ Carbides, Nitrides, Borides etc. Now a electorn beam evaporation(EBE) broad beam metal ion source has been developed for this purpose in our lab. CN film has been formed by the EBE ion source. Study of the CN film shows that it has high hardness(HK=5800kgf/$\textrm {mm}^2$)and good adhesion. This method can widely changes the ratio of C/N atom's concentrations from 0.14 to 0.6 and has high coating rate. The low energy pocket ion source which was specially designed for surface texturing of medical silicon rubber was also developed. It has high efficiency and large uniform working zone. Both nature texturing and mesh masked texturing of silicon rubbers were performed. The biocompatibility was tested by culture of monocytes, and the results showed improved biocompatibility for the treated silicon rubbers. In addition, the TiB2 film synthesized by IBED is being studied recently in our lab. In this paper, the results which include the hardness, thickness of the films and the AES, XRD analysis as well as the tests of the oxidation of high temperature and erosion will be presented.

  • PDF