• Title/Summary/Keyword: Ion Transport

Search Result 471, Processing Time 0.024 seconds

Concentration Variations of Trace Elements in Gosan, Jeiu During the Polluted Period in November 2001 and the Yellow Sand Period in Spring 2002 (2001년 11월 오염시기와 2002년 봄 황사시기 제주도 고산에서의 미량원소 농도 변화)

  • Han J.S;Ghim Y.S;Moon K.J;Ahn J.Y;Kim J.E;Ryu S.Y;Kim Y.J;Kong B.J;Lee S.J
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • The chemical composition of PM$_{2.5}$ was measured at Gosan, Jeju for two weeks each in November 2001 and spring 2002. In the latter part of the measurement period of November 2001, designated as the polluted period in this work, secondarily formed ion components as well as primarily emitted elemental carbon were high. PM$_{2.5}$ mass concentration was also high in this polluted period compared with the yellow sand period, in which daily average of PM $_{10}$ peaked up to 520 $\mu\textrm{g}$/㎥. Increase of major components of anthropogenic origin in the polluted period was not correlated with the variation in sea salt components while increase of crustal components in the yellow sand period was highly correlated with the variation in sea salt components. Trace elements were generally higher in the yellow sand period; however, toxic heavy metals such as zinc, cadmium and lead were the highest in the polluted period.d.d.d.

Evidence for Sulfite Proton Symport in Saccharomyces cerevisiae

  • Park, Hoon;Alan T. Bakalinsky
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.967-971
    • /
    • 2004
  • The kinetics of sulfite uptake were examined in a wild-type laboratory strain of Saccharomyces cerevisiae to determine if carrier-mediated sulfite uptake involved a proton symport, as previous studies on sulfite uptake have suggested both an active process and facilitated diffusion. Accumulation of intracellular sulfite was initially rapid and linear up to 50 sec. Uptake was saturable at final concentrations equal to or greater than 3 mM sulfite, and increased 2-fold in the presence of 2% glucose. Uptake was significantly reduced in cells pretreated with 100-500 $\mu$M carbonyl cyanide mchlorophenylhydrazone (CCCP) or 2,4-dinitrophenol (DNP), both of which dissipate proton gradients. Uptake was also significantly inhibited in the presence of 1 mM arsenate, an inhibitor of ATP synthesis. Extracellular alkalization was observed in cells incubated with 1-2 mM sulfite in a weak tartrate buffer at pH 3.5 and 4.5. These findings suggest that the bisulfite ion, $HSO_3^-$, an anionic form of sulfite, is taken up by a carrier-mediated proton symport. A met16 sull sul2 mutant, impaired in both sulfite formation and sulfate uptake, was found able to grow on a medium with sulfite as the sole Sulfur source, indicating that the sulfate transporters Sul1p and Sul2p are not required for sulfite uptake.

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.

A Case of Congenital Chloride Diarrhea in Premature Infant (Congenital Chloride Diarrhea 1례)

  • Yoon, Sung Kwan;Kim, Eun Young;Moon, Kyung Rye;Park, Sang Kee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.3
    • /
    • pp.308-311
    • /
    • 2003
  • Congenital chloride diarrhea is a serious autosomal recessive disease, and defect of intestinal electrolyte absorption that involves, specifically, $Cl^-/{HCO_3}^-$ exchange in the distal part of the ileum and colon. The clinical feature is dominated by profuse, watery diarrhea containing high concentrations of chloride(>90 mmol/L) and sodium. The chloride loss results in severe dehydration with a hypochloremic alkalosis. The molecular pathology involves an epithelial $Cl^-/{HCO_3}^-$ exchanger protein. Mucosal ion transport is affected to differing degrees and the severity of the disease may thus vary. Recently, a gene defect on chromosome 7 has been identified. However, there was a deficit in replacement of fluid and electrolyte, abdominal distension remained and the character of stools was watery. We report a case of congenital chloride diarrhea in a premature female who presented with watery diarrhea containing high concentrations of chloride and abdominal distension.

The involvement of oxygen free radicals in the onset of aging (노화에 미치는 산소 유리라디칼에 관한 연구동향)

  • Kim, Jung-Sang;Na, Chang-Su;Kim, Young-Kon
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.229-239
    • /
    • 1997
  • The superoxide anion radical$(O_2)$ poses a threat to macromocules and cell organelles of the living cells. This toxicity damage to all groups of proteins results in loss of enzyme function concerned with metabolism and ion transport, and peroxidation of unsaturated fatty acids and cholesterol results in a change of permeability characteristics of the membrane, and oxidative of nucleic acids results in genomic damage and thereby cause mutation, potential carcinogenesis and somatic damage that produce cellular aging Superoxide dismutase(SOD) has received substantial attention as a potential therapeutic agent. It has been investigated as a possible agent for the prevention of ontogenesis, the reduction of cytotoxic effect of anticancer drugs, and protection against damage in ischemic tissue. It is suggest that $O_2$ is concerned with cellular aging, thereafter we need to investigate herb that activated to SOD.

  • PDF

Ion Transport and High Frequency Dielectric of the Hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$ (교류전압 인가 상태에서 저압 진공관의 방전현상)

  • Wang, Gang;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-244
    • /
    • 2008
  • We experimentally investigated discharge phenomena inside vacuum interrupter at 1 to 20 Torr to simulate the vacuum leakage. We used glass type of vacuum interrupter where the internal pressure and the type of gasses can be varied according to requirement. The experiment is conducted under ac applied voltage and the experimental circuit is constructed to simulate the actual circuit used in cubical type insulated switchgear. We used two types of gases such as air and $SF_6$. The use of glass type vacuum interrupter allowed us to measure discharges occurring in vacuum interrupter optically. We measured and discussed the discharge occurring in both gases with a current transformer and ICCD camera. We a1so revealed that electromagnetic wave spectra emitted by the discharge have same frequency range for both gasses.

  • PDF

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

Effect of the Pore Structure of Concrete on the Compressive Strength of Concrete and Chloride Ions Diffusivity into the Concrete

  • Kim, Jin-Cheol;Paeng, Woo-Seon;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.345-351
    • /
    • 2003
  • The transport characteristics of deleterious ions such as chlorides depend on the pore structures of concrete and are the major factors in the durability of concrete structures in subjected to chloride attack such as in marine environments. In this paper, the effect of the pore structure on compressive strength and chloride diffusivity of concrete was investigated. Six types of concretes were tested. The pore volume of concrete containing mineral admixtures increased in the range of 3∼30nm due to micro filling effect of hydrates of the mineral admixtures. There was a good correlation between the median pore diameter, the pore volume above 50nm and compressive strength of concrete, but there was not a significant correlation between the total pore volume and compressive strength. The relationship between compressive strength and chloride diffusivity were not well correlated, however, pore volume above 50nm were closely related to the chloride diffusion coefficient.

Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena

  • Ahn, Pyung-An;Shin, Eui-Chol;Kim, Gye-Rok;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.549-558
    • /
    • 2011
  • Application of a generalized equivalent circuit including the electrode condition for the Hebb-Wagner polarization in the frequency domain proposed by Jamnik and Maier can provide a consistent set of material parameters, such as the geometric capacitance, partial conductivities, chemical capacitance or diffusivity, as well as electrode characteristics. Generalization of the shunt capacitors for the chemical capacitance by the constant phase elements (CPEs) was applied to a model mixed conducting system, $Ag_2S$, with electron-blocking AgI electrodes and ion-blocking Pt electrodes. While little difference resulted for the electron-blocking cell with almost ideal Warburg behavior, severely non-ideal behavior in the case of Pt electrodes not only necessitates a generalized transmission line model with shunt CPEs but also requires modelling of the leakage in the cell approximately proportional to the cell conductance, which then leads to partial conductivity values consistent with the electron-blocking case. Chemical capacitance was found to be closer to the true material property in the electron-blocking cell while excessively high chemical capacitance without expected silver activity dependence resulted in the electron-blocking cell. A chemical storage effect at internal boundaries is suggested to explain the anomalies in the respective blocking configurations.

Nanoscale Floating-Gate Characteristics of Colloidal Au Nanoparticles Electrostatically Assembled on Si Nanowire Split-Gate Transistors

  • Jeon, Hyeong-Seok;Park, Bong-Hyun;Cho, Chi-Won;Lim, Chae-Hyun;Ju, Heong-Kyu;Kim, Hyun-Suk;Kim, Sang-Sig;Lee, Seung-Beck
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Nanoscale floating-gate characteristic of colloidal Au nanoparticles electrostatically assembled on the oxidized surface of Si nanowires have been investigated. The Si nanowire split-gate transistor structure was fabricated by electron beam lithography and subsequent reactive ion etching. Colloidal Au nanoparticles with ${\sim}5$ nm diameters were selectively deposited onto the Si nanowire surface by 2 min electrophoresis. It was found that electric fields applied to the self-aligned split side gates allowed charge to be transferred on the Au nanoparticles. It was observed that the depletion mode cutoff voltage, induced by the self-aligned side gates, was shifted by more than 1 V after Au nanoparticle electrophoresis. This may be due to the semi-one dimensional nature of the narrow Si nanowire transport channel, having much enhanced sensitivity to charges on the surface.