• Title/Summary/Keyword: Ion Size

Search Result 1,130, Processing Time 0.029 seconds

An Investigation of TEM Specimen Preparation Methods from Powders Using a Centrifuge (원심분리기를 이용한 분말시료의 TEM용 시편 준비법 연구)

  • Jeung, Jong-Man;Lee, Young-Boo;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.67-73
    • /
    • 1999
  • It is practically hard to prepare good TEM specimens from powders which are embedded in epoxy materials for ion milling, because the milling rate difference between powders and epoxy is quite large. In order to overcome this problem, we tried to find methods to increase the density of powders in the embedding epoxy without loosing the adhesive strength between them. Powder density was considerably increased by employing a centrifuge for embedding, compared to the result by a conventional vacuum embedding. In addition, mixing powders of different sizes after sieving also enhanced the final density by allowing smaller particles filling in the gaps of larger particles. Ion milling of powders embedded by these methods resulted in thin specimens good enough for normal TEM works. TEM specimens from spherical, platy and fibrous powders of submicron size were successfully prepared by this centrifuging method.

  • PDF

Basic Study for Development of Denitrogenation Process by Ion Exchange(V) -Synthesis of Nitrate-Selective Ion Exchange Resines- (이온교환법에 의한 탈질소 공정개발의 기초연구(V) -질산성 질소 선택적인 이온교환수지의 합성-)

  • 이동환;김승일;전진희;박찬영;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • Nitrate-selective ion exchange resin which have bulky tertiary amine as functional group have been synthesized by the reaction of chloromethylated polystyrene-divinylbenzene copolymer and the corresponding tertiary amine [$NR_3=NE_{t3} 1, N{(C_2 H_4 H_3)}_32]$in ethanol, while commercial resin has $NMe_3$ as functional group. The fundamental properties such as bulk density, water content, appearance index, exchange capacity, effective size, uniformity coefficient of synthesized anion exchange resin (1) have been measured. The ion exchange resin (1) and (2) exhibited the better selectivity for nitrate than sulfate in both batch and continuous column experiments.

  • PDF

Advanced Methodologies for Manipulating Nanoscale Features in Focused Ion Beam

  • Kim, Yang-Hee;Seo, Jong-Hyun;Lee, Ji Yeong;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.208-213
    • /
    • 2015
  • Nanomanipulators installed in focused ion beam (FIB), which is used in the lift-out of lamella when preparing transmission electron microscopy specimens, have recently been employed for electrical resistance measurements, tensile and compression tests, and in situ reactions. During the pick-up process of a single nanowire (NW), there are crucial problems such as Pt, C and Ga contaminations, damage by ion beam, and adhesion force by electrostatic attraction and residual solvent. On the other hand, many empirical techniques should be considered for successful pick-up process, because NWs have the diverse size, shape, and angle on the growth substrate. The most important one in the in-situ precedence, therefore, is to select the optimum pick-up process of a single NW. Here we provide the advanced methodologies when manipulating NWs for in-situ mechanical and electrical measurements in FIB.

A Study on the Spray Characteristics with Ultrasonic added Fuel Injection System (초음파 연료분사장치의 분무특성에 관한 연구)

  • Yoon, M.K.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.85-91
    • /
    • 1996
  • This experiment was undertaken to investigate spray characteristics of the conventional inject ion system and the ultrasonic energy added inject ion system. Sauter mean diameter was mesured under the variation of inject ion pressure and the spray distance. To measure the droplet size we used the Malvern system 2600C. The spray angle and mass distribution was analyzed to the CCD camera and the patternater. After experiment, it was found that the ultrasonic energy added injection system had smaller sauter men diameter of droplet, wider mass distribution and wider spray angle than the conventional inject ion system had.

  • PDF

Effect of Pore-Characteristics of Concrete on the Diffusion Coefficient of Chloride Using the Accelerating Test Methods (콘크리트 중의 공극 특성에 따른 전위차 염소이온 확산계수)

  • 문한영;김홍삼;최두선;오세민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.711-714
    • /
    • 2003
  • Factors causing deterioration of concrete structures under marine environment are various, especially penetration and diffusion of chloride ion, carbon dioxide, and water through pore effects on the durability of concrete as well as mechanical properties of concrete. Pore of porous materials like concrete can be classified as micro-, meso-, and macro-pore. And pore of cement matrix is classified as pore which occupied by water, air void, and ITZ between cement paste and aggregates. In this study, to verify the relationship between pore of cement matrix and the property of chloride ion diffusivity, the regression analysis is producted. From the result of regression analysis, the average pore diameter more than total pore volume effects on the diffusivity of chloride ion.

  • PDF

Development of physically based 3D computer simulation code TRICSI for ion implantation into crystalline silicon

  • Son, Myung-Sik;Lee, Jun-Ha;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • A new three-dimensional (3D) Monte Carlo ion implantation simulator, TRICSI, has been developed to investigate 3D mask effects in the typical mask structure for ion implantation into crystalline silicon. We present the mask corner and mask size effects of implanted boron range profiles, and also show the calculated damage distributions by applying the modified Kinchin-Pease equation in the single-crystal silicon target. The simulator calculates accurately and efficiently the implanted-boron range profiles under the relatively large implanted area, using a newly developed search algorithm for the collision partner in the single-crystal silicon. All of the typical implant parameters such as dose, tilt and rotation angles, in addition to energy can be used for the 3D simulation of ion implantation.

Sr2+ Ion Selective p-tert-Butylthiacalix[4]arene Bearing Two Distal Amide Units

  • Kim, Tae-Hyun;Kim, Ha-Suck;Lee, Joung-Hae;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.620-622
    • /
    • 2008
  • A new thiacalix[4]arene diamide (TCAm) has been prepared and its electrochemical property and complexation behavior toward various metal ions have been investigated by voltammetry. p-tert-Butylthiacalix[4]arene diamide (TCAm) exhibited selectivity toward Sr2+ ion over alkali, alkaline earth and transition metal ions while conventional calix[4]arene diamides showed selective binding property with Ca2+ ion. This is probably due to the bigger size of thiacalix[4]arene than those of calix[4]arene.

Metallic Nano Particle Generation by Supersonic Nozzle with Corona Discharge (초음속 유동에서 코로나 방전을 이용한 금속 나노 입자의 생성)

  • Jung, Jae-Hee;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1510-1515
    • /
    • 2004
  • The effects of additive ions on the generation of metallic nanoparticles were evaluated using a corona induced supersonic nozzle. Applying the corona discharge to the nanoparticle generator, a tungsten needle and the supersonic nozzle are used as an anode electrode and a cathode electrode respectively. The corona ions act as nuclei for the silver vapor condensation. The ion density was controlled precisely as varying the applied voltage between electrode and nozzle. The mean diameter of the silver particle decreases as the ion density increases. However, the number concentration of the silver particle tended to increase with the ion density. The size distribution is more uniform as the ion density increases.

  • PDF

A New Trend of In-situ Electron Microscopy with Ion and Electron Beam Nano-Fabrication

  • Furuya, Kazuo;Tanaka, Miyoko
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.25-33
    • /
    • 2006
  • Nanofabrication with finely focused ion and electron beams is reviewed, and position and size controlled fabrication of nano-metals and -semiconductors is demonstrated. A focused ion beam (FIB) interface attached to a column of 200keV transmission electron microscope (TEM) was developed. Parallel lines and dots arrays were patterned on GaAs, Si and $SiO_2$ substrates with a 25keV $Ga^+-FIB$ of 200nm beam diameter at room temperature. FIB nanofabrication to semiconductor specimens caused amorphization and Ga injection. For the electron beam induced chemical vapor deposition (EBI-CVD), we have discovered that nano-metal dots are formed depending upon the beam diameter and the exposure time when decomposable gases such as $W(CO)_6$ were introduced at the beam irradiated areas. The diameter of the dots was reduced to less than 2.0nm with the UHV-FE-TEM, while those were limited to about 15nm in diameter with the FE-SEM. Self-standing 3D nanostructures were also successfully fabricated.

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF