• Title/Summary/Keyword: Ion Size

Search Result 1,137, Processing Time 0.029 seconds

Comparison of the Number Concentration and the Chemical Composition of the Atmospheric PM2.5 in Jeju Area

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.743-753
    • /
    • 2014
  • The number concentrations and the water soluble ionic concentrations of $PM_{2.5}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010, to clarify their characteristics. $PM_{2.5}$ number concentrations vary from 22.57 to $975.65particles/cm^3$ with an average value of $240.41particles/cm^3$, which have been recorded evidently high in spring season as compared with those in other season. And the concentrations in small size ranges are greatly higher than those in large size ranges, so the number concentration in the size range $0.25{\sim}0.45{\mu}m$ has more than 94% of the total number concentration of $PM_{2.5}$. The major ionic components in $PM_{2.5}$ are $SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$, which are mainly originated from anthropogenic sources, on the other hand, the concentrations of $Cl^-$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$ are recorded relatively lower levels. The concentrations of the major ionic components are very high in spring season, but the concentration levels of the other components are recorded significantly high in winter season. On the other hand, in summer season, the lowest concentration levels are observed for overall components as well as the sum of them. The concentration ratios of nss-$SO{_4}^{2-}/SO{_4}^{2-}$ and nss-$Ca^{2+}/Ca^{2+}$ are 98.1% and 88.9%. And the concentration ratio of $SO{_4}^{2-}/NO_3{^-}$(3.64) is greatly higher than the value in urban area due to no large $NO_x$ emission sources in the measurement. In addition, the correlation and the factor analysis for the number and the ionic concentrations of $PM_{2.5}$ are performed to identify their sources. From the Pearson correlation analysis and the factor analysis, it can be suggested that the smaller parts(< $0.5{\mu}m$) of $PM_{2.5}$ is contributed by anthropogenic sources, but the sources of the remaining larger parts of $PM_{2.5}$ are not able to be specified sources in this study.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

A Study on Effect of Temperature on Particle Size Distribution of Nickel Ferrite (온도의 영향에 따른 니켈페라이트의 입자 크기 분포 연구)

  • Ahn, Hyung-Kyoung;Lee, In-Hyoung;Jeong, Hyun-Jun;Park, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1768-1774
    • /
    • 2008
  • The particulate behaviors of nickel ferrite were investigated under the simulated PWR shutdown chemistry conditions. Temperature of the simulated water with concentration of 0.1 ppm Li and 2,000 ppm B was dropped from $300^{\circ}C$ to $150^{\circ}C$ with a rate of $0.625^{\circ}C/min$ and then constantly maintained at $150^{\circ}C$ under the pressure of 2,500 psi. The on-line particle counting and the concentration measurement of nickel dissolved were performed under 5, 15 and 25 cc/kg $H_2O$ dissolved hydrogen. Experimental results showed that total particle count in the simulated water was not greatly changed for three hydrogen concentrations as temperature was decreased. However, particles were smaller as temperature was decreased and then maintained constantly. The degree of variation in particle size distribution was greater at 15 cc/kg $H_2O$ dissolved hydrogen than any other dissolved hydrogen concentrations. Concentration of nickel ion was increased as temperature was decreased and was higher at 15 cc/kg $H_2O$ dissolved hydrogen than any other dissolved hydrogen concentrations. Theses results show that nickel ferrite is unstable with temperature variation and at dissolved hydrogen concentration of 15 cc/kg $H_2O$.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

Structure and Electrochemical Characterization of LiNi0.5Mn0.3Co0.2O2 as the Cathode Material Synthesized by Simple-combustion Method (단순 연소법으로 합성한 LiNi0.5Mn0.3Co0.2O2 양극 활물질의 구조 분석 및 전기화학적 특성 연구)

  • Cho, Sung-Woo;Ju, Jeong-Hun;Ryu, Seong-Hyeon;Ryu, Kawng-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2010
  • $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ active material was prepared by simple-combustion method and investigated as the cathode material for li-ion battery. The structural characterization was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The XRD patterns of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ sample was indicated a phase of layered hexagonal structure. The size of particles has not uniform diameters ranging from 100 to 300 nm. The electrochemical performance of the $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ was measured by Cyclic Voltammetry and galvanostatics. The $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ shows the discharge capacity of ~162 mAh/g in the range of 2.8 to 4.3 V at the first cycle.

An Experimental Study on the Properties of Chloride Binding of Mg/Al-NO3 and Ca/Al-NO3 Layered Double Hydroxides in Solution (수용액내에서 Mg/Al-NO3 및 Ca/Al-NO3 층상이중수산화물(LDHs)의 염소이온 고정화 특성에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Chloride ions ingress continuously in reinforced concrete through pores of it by $Cl^-$. Finally, it causes a localized corrosion of the rebar and then it generates cracks on concrete structures. Recently, new materials removing harmful anions have been developed. Layered double hydroxides(LDHs) has an excellent ability to remove harmful anions because various anions can be adsorbed in the interlayer space between divalent and trivalent cations. Thus, LDHs has been applied in various fields. Especially, LDHs is expected to be effective adsorbent binding chloride ions. In this study, $Ca/Al-NO_3$ and $Mg/Al-NO_3$ LDHs were prepared by using a co-precipitation method. $Ca/Al-NO_3$ and $Mg/Al-NO_3$ LDHs were compared and analyzed by using XRD, SEM analysis. Many nano size hexagonal crystals were observed by SEM. Experiments for binding chloride ions of LDHs were conducted by using potentiometric method. The experimental data were measured every 15 minutes. It was observed that the chloride ion content is reduced by increasing of LDHs mass fraction and the reaction rate of $Mg/Al-NO_3$ is faster than $Ca/Al-NO_3$. In future studies, binding chloride capacity in cement materials will be evaluated based on results of this study.

The Analysis of Dioxin-like PCBs in Fishes and Shellfishes using Accelerated Solvent Extraction (ASE) System and Multilayer Column Chromatography (가속용매추출장치(ASE) 및 다층크로마토그래피를 이용한 어패류 중의 dioxin-like PCBs의 분석)

  • Oh, Keum-Soon;Park, Seong-Soo;Chung, So-Young;Sho, You-Sub;Kim, Jung-Soo;Jang, Seoung-Chul;Lee, Jong-Ok;Kim, Hee-Yun;Woo, Gun-Jo;Suh, Jung-Hyuck
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.122-127
    • /
    • 2007
  • In this study, an analytical method was optimized for detecting dioxin-like PCBs in fish and shellfish. Here, homogenized samples were extracted using an accelerated solvent extraction (ASE) system with 33 mL cell size. Multilayer column chromatography, which consisted of acidic, basic and neutral silica gels, was used for the clean up of the extracts. The instrumental analysis was executed by HRGC/HRMS to a resolution of 10,000 using 4 window multiple ion detection (MID) mode. For the results, the average recoveries ranged from 94.1 to 104.1% (${\pm}8.4$) and the limit of detection was approximately 0.1 pg/g at S/N ratio >3. Finally, the detected concentrations of dioxin-like PCBs for fish and shellfish were in the range of 0.030-1.836 pg TEQ/g.

Analytical Methods of Levoglucosan, a Tracer for Cellulose in Biomass Burning, by Four Different Techniques

  • Bae, Min-Suk;Lee, Ji-Yi;Kim, Yong-Pyo;Oak, Min-Ho;Shin, Ju-Seon;Lee, Kwang-Yul;Lee, Hyun-Hee;Lee, Sun-Young;Kim, Young-Joon
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 2012
  • A comparison of analytical approaches for Levoglucosan ($C_6H_{10}O_5$, commonly formed from the pyrolysis of carbohydrates such as cellulose) and used for a molecular marker in biomass burning is made between the four different analytical systems. 1) Spectrothermography technique as the evaluation of thermograms of carbon using Elemental Carbon & Organic Carbon Analyzer, 2) mass spectrometry technique using Gas Chromatography/mass spectrometer (GC/MS), 3) Aerosol Mass Spectrometer (AMS) for the identification of the particle size distribution and chemical composition, and 4) two dimensional Gas Chromatography with Time of Flight mass spectrometry (GC${\times}$GC-TOFMS) for defining the signature of Levoglucosan in terms of chemical analytical process. First, a Spectrothermography, which is defined as the graphical representation of the carbon, can be measured as a function of temperature during the thermal separation process and spectrothermographic analysis. GC/MS can detect mass fragment ions of Levoglucosan characterized by its base peak at m/z 60, 73 in mass fragment-grams by methylation and m/z 217, 204 by trimethylsilylderivatives (TMS-derivatives). AMS can be used to analyze the base peak at m/z 60.021, 73.029 in mass fragment-grams with a multiple-peak Gaussian curve fit algorithm. In the analysis of TMS derivatives by GC${\times}$GC-TOFMS, it can detect m/z 73 as the base ion for the identification of Levoglucosan. It can also observe m/z 217 and 204 with existence of m/z 333. Although the ratios of m/z 217 and m/z 204 to the base ion (m/z 73) in the mass spectrum of GC${\times}$GC-TOFMS lower than those of GC/MS, Levoglucosan can be separated and characterized from D (-) +Ribose in the mixture of sugar compounds. At last, the environmental significance of Levoglucosan will be discussed with respect to the health effect to offer important opportunities for clinical and potential epidemiological research for reducing incidence of cardiovascular and respiratory diseases.

A Study on the Characterization of PM$_{2.5}$, PM$_{10}$ Concentration at Asian and Non-Asian Dust in Asan Area (아산지역의 황사/비황사시 PM$_{2.5}$, PM$_{10}$ 농도특성에 관한 연구)

  • Chung, Jin-Do;Hwang, Seung-Min;Choi, Hee-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1111-1115
    • /
    • 2008
  • The characterization of PM$_{2.5}$ and PM$_{10}$ concentration is considered by analysis of ionic and heavy metal component to measured suspended particle at atmosphere in Hoseo university of Asan area. The variation of concentration is studied at the periods of asian dust occured. In asian dust, the PM$_{2.5}$ ratio is decreased from 79.7% to 40.1%, whereas the size-classified mean concentration of suspended particle is increased largely. It is found that the PM$_{2.5}$ ratio is decreased relatively because the coarse particle is increased largely according to the analysis of the mass concentration to divide the fine and coarse particle on 2.1 $\mu$m basis. It is observed that the Ca$^{2+}$ion is about 40 magnifications and Na$^+$, SO$_4{^{2-}}$ ion is increased in sequence in coarse particle, whereas the variation of ionic concentration is slightly increased in the fine particle. Furthermore, Mn, Fe, Zn, and Al are increased in sequence as the result of heavy metal component analysis, and Al is shown the most increased as mass concentration.