• Title/Summary/Keyword: Iodine number

Search Result 115, Processing Time 0.025 seconds

Effect of Lugol's Iodine Preservation on Cyanobacterial Biovolume and Estimate of Live Cell Biovolume Using Shrinkage Ratio (Lugol's Iodine Solution 첨가 후 보존 기간별 남조류 세포부피 변화 및 수축비를 이용한 생세포 부피 산정)

  • Park, Hae-Kyung;Lee, Hyeon-Je;Lee, Hae-Jin;Shin, Ra-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • The monitoring of phytoplankton biomass and community structure is essential as a first step to control the harmful cyanobacterial blooms in freshwater systems, such as seen in rivers and lakes, due to the process of eutrophication and climate change. In order to quantify the biomass of phytoplankton with a wide range in size and shape, the measurement of cell biovolume along with cell density is required for a comprehensive review on this issue. However, most routine monitoring programs preserve the gathered phytoplankton samples before analysis using chemical additives, because of the constraint of time and the number of samples. The purpose of this study was to investigate the cell biovolume change characteristics of six cyanobacterial species, which are common bloom-causing cyanobacteria in the Nakdong River, after the preservation with Lugol's iodine solution. All species showed a statistically significant difference after the addition of Lugol's iodine solution compared to the live cell biovolume, and the cell biovolume decreased to the level of 34.0 ~ 56.3 % at maximum in each species after the preservation. The nonlinear regression models for determining the shrinkage ratio by a preservation period were derived by using the cell biovolume measured until 180 days preservation of each target species, and the equation to convert the cell biovolume measured after preservation for a certain period to the cell biovolume of viable cell was derived using that formula. The conversion equation derived from this study can be used to estimate the actual cell biovolume in the natural environment at the time of sampling, by using the measured biovolume after the preservation in the phytoplankton monitoring. Moreover this is expected to contribute to the final interpretation of the water quality and aquatic ecosystem impacts due to the cyanobacterial blooms.

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

The Effect of $Ca^{2+}$ on the Interaction of Anionic-Nonionic Surfactant Mixture with Iodine (음이온성-비이온성 혼합계면활성제와 요오드간의 상호작용에 미치는 $Ca^{2+}$의 영향)

  • Oh-Yun Kwon;Jung-Sung Kim;U-Kyon Paek
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.10
    • /
    • pp.855-860
    • /
    • 1993
  • In the presence of SDS(sodium dodecyl sulfate), effect of $Ca^{2+}$on the interaction of NP-40EO[nonylphenol-(ethylene oxide)40] with iodine in aqueous solution were investigated by UV-visible spectrophotometer. In the presence of SDS, the intensity of interaction peaks were decreased and markedly increased by the addition of $Ca^{2+}$. Decrease of interaction peaks is caused by decrease of EO number to be interact with iodine per unit surface area of mixed micelle to the insertion of SDS and increase is attributed to the compactness of micelle in the presence of $Ca^{2+}$. These phenomena may be explained by the fact that the linear EO (ethylene oxide) chains, to be free in aqueous solution, could form a pseudo-crown ether structures of forming with $Ca^{2+}$ion.

  • PDF

Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Shirvani Arani, Simindokht;Salavati Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1738-1742
    • /
    • 2005
  • In this study a novel triiodide ion-selective electrode based on a charge transfer complex of iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (ICT), as a membrane carrier was prepared. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ and 5.0 ${\times}$ $10^{-7}$ M, with a Nernstian slope of 58. 99 ${\pm}$ 0.3 mV $decade^{-1}$ and detection limit of 3.0 ${\times}$ $10 ^{-7}$ M. The potentiometric response of the proposed sensor is independent of the pH of the solution in the pH range of 3.0-10.0. The electrode possesses the advantages of short conditioning time, fast response time, and especially, very good selectivity over a large number of common organic and inorganic anions. The electrode can be used for at least 6 months without any considerable divergences in the potentials. It was used as an indicator electrode in potentiometric titration of triiodide ion with thiosulfate.

Study on the Production of Activated Carbon using Chinese Cabbage (배추를 이용한 활성탄 제조에 관한 연구)

  • Lee,Seong-Heon;Lee,Bong-Hyeon;Park,Hong-Jae
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.373-380
    • /
    • 2001
  • In recent years, the demand of activated carbon has been increasing steadily because of the environmental problems. Among them waste and water treatment and removal of poisonous gas were invorved. Therefore, in this study, activated carbon was made from the waste chinese cabbage and measured the iodine adsorption ability, carbonization yield, and activation yield of the produced activated carbon. The result showed that the carbonization yield was decreased when carbonization temperature was increaed and that the optimal carbonization temperature was $600{\circ}C$. The optimal concentration of NaOH for removing ash in the raw sample was 1~2N. The range of iodine adsorption number of activated carbon using chinese cabbage at $600{\circ}C$. carbonization was 610.82mg/g to 1019.58mg/g. The activation result of carbonization sample showed that the optimal activation condition was the carbonization at $400\circ}C$ and the activation at$700{\circ}C$. So the production of activated carbon using chinese cabbage was possible in the aspect of reuse of resource and decrease of environmental pollution compared to the commercial activated carbon.

  • PDF

The Properties of Amylose of Cow Pea Starch (동부 전분의 아밀로오스 특성)

  • Kweon, Mee-Ra;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.39-42
    • /
    • 1990
  • The properties of amylose of cow pea starch were investigated. Amylose content of cow pea was 25.1 % and iodine binding capacity was 20.2 %. The ${\beta}-amylolysis$ limit of the amylose was 82.3%. The limiting viscosity number of the amylose fraction was 204 ml/g and the corresponding average degree of polymerization was 1,510 glucose units. The percent distribution of molecular weight of the amylose by gel chromatography was $1{\times}10^4$(0.7 %), $1{\times}10^4{\sim}4{\times}10^4$(4.1 %), $4{\times}10^4{\sim}5{\times}10^5$(44.6 %), $5{\times}10^5{\sim}4{\times}10^7$(49.6 % ).

  • PDF

Radioactive Iodine Therapy Room a Part University Hospital of the Actual Conditions of Safety Management Consideration (일부 대학병원 방사성옥소 치료병실의 안전관리로 본 실태 고찰)

  • Han, Sang-Hyun;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.373-381
    • /
    • 2012
  • Using Radioiodine therapy of thyroid cancer in the past have been used for decades as many look forward to continuing treatment be used, and the current outlook of in korea 2010 based on the number of Iodine therapy room is operated by 124, but still is lacking. So many hospitals opened their therapy room, but importantly, increasing number of treatment rather than therapy room current treatment is that it must be preceded by the proper administration of the. Therefore therapy room expansion, discussions about before now being applied therapy room safety management standards, and a part university hospital based safety management standards by examining how well kept and that the therapy room to the use of the overall safety management research on the actual condition were discussed.

The Analysis of radioactivity Concentration in drainage when using a radioactive Iodine (방사성옥소 사용 시 배수 중 방사능농도 분석)

  • Lee, Kyung-Jae;Sul, Jin-Hyung;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • Purpose With regard to the use of radioiodine in domestic medical institution, the case of exceeding the allowance of nuclear safety Act about radioactive concentration in drainage was found. Through understanding the cause of exceeding case and analyzing radioactive concentration in drainage, evaluating the relationship of the public waters in surroundings and usefulness. Materials and Methods From November 1, 2014 to April 30th, 2015, the research is aiming at domestic twenty hospitals for six months. By using a HPGe gamma-ray spectrometer(Canberra DSA-1000) and GENIE-2000 Analysis software for comparative analysis, measuring a radioactive concentration of radioiodine in drainage. Consequently, we confirm the excess of radioactive concentration of radioiodine in seven medical institutions. Results Conducting a survey of twenty hospitals and average radioactive concentration of radioiodine in drainage appears $42,100Bq/m^3$. The features of domestic hospitals where show a high radioactive concentration are a number of medical treatment patient when using radioactive iodine and the absence of private rest room. During I-131 whole body scan, the pretreatment procedure of urinating is considered emission of residual Iodine. In public waters, the cause of exceeding detect on radioactive concentration in drainage suppose a diagnostic radioactive iodine. Conclusion We confirm the importance of enhanced education, providing a safety control instructions and installing a private rest rooms for patients who injected a low capacity radioiodine. Also, constructing institutional and legal management system is considered about the Emission management standard in drainage.

Establishment of Quality Control System for Angiographic Unit (IVR장치의 성능 평가 기준 개발)

  • Kang, Byung-Sam;Son, Jin-Hyun;Kim, Seung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.236-244
    • /
    • 2011
  • Recently, the number of interventional procedures has increased dramatically as an alternative of invasive surgical procedure. The need for the quality control program of the angiographic units has also increased, because of concerns about the increased patient dose and the importance of image quality of angiographic units for the successful procedures. The purpose of this study was to propose an optimal guideline for the quality control program of the angiographic units. We reviewed domestic and international standards about medical imaging system and we evaluated the quality of 61 angiographic units in Korea with the use of NEMA 21 phantom. According to the results of our study, we propose a guideline for the quality control program of the angiographic units. Quality control program includes tube voltage test, tube current test, HVL test, image-field geometry test, spatial resolution test, low-contrast iodine detectability test, wire resolution test, phantom entrance dose test. Proposed reference levels are as follows: PAE < $\pm$ 10% in tube voltage test, PAE < $\pm$ 15% in tube current test, minimum 2.3 mmAl at 80 kVp in HVL test, minimum 'acceptable' level at image-field geometry test, 0.8 lp/mm for detector size of 34-40cm, 1.0 lp/mm for detector size of 28-33cm, 1.2 lp/mm for detector size of 22-27cm in spatial resolution test, minimum 200mg/cc in low contrast iodine detectability test, phantom entrance dose should be under 10R/min, 0.012 inch wire should be seen at static wire resolution test, and 0.022 inch wire should be seen at moving wire resolution test.

Determination of Self-Disposal date by the Analysis of Radioactive Waste Contamination for 1131I Therapy Ward (131I 치료입원실 폐기물 방사능 오염도 분석 및 자체처분가능일자 산출)

  • Kim, Gi-sub;Jung, Haijo;Park, Min-seok;Jeon, Gjin-seong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.3-6
    • /
    • 2013
  • Purpose: The treatment of thyroid cancer patients was continuously increased. According to the increment of thyroid cancer patients, the establishment of iodine therapy site was also increased in each hospital. This treatment involves the administration of radioactive iodine, which will be given in the form of a capsule. Therefore, protections and managements for radioactive source pollution and radiation exposure should be necessary for radiation safety. Among the many problems, the problem of disposing the radioactive wastes was occurred. In this study, The date for self-disposal for radioactive wastes, which were contaminated in clothes, bedclothes and trash, were calculated. Materials and Methods: The number of iodine therapy ward was 15 in Korea Institute of Radiological Medical and Sciences. Recently, 8 therapy wards were operated for iodine therapy patients and others were on standby for emergency treatment ward of any radiation accidents. Radioactive wastes, which were occurred in therapy ward, were clothes, bedclothes, bath cover for patients washing water and food and drink which was leftover by patients. Each sample was hold into the marinelli beaker (clothes, bedclothes, bath covers) and 90 ml beaker (food, drink, and washing water). The activities of collected samples were measured by HpGe MCA device (Multi Channel Analysis, CANBERRA, USA) Results: The storage period for the each kind of radioactive wastes was calculated by equation of storage periods based on the measurement outcomes. The average storage period was 60 days for the case of clothes, and the maximum storage period was 93 days for patient bottoms. The average storage period and the maximum storage period for the trash were 69 days and 97 days, respectively. The leftover foods and drinks had short storage period (the average storage period was 25 days and maximum storage period was 39 days), compared with other wastes. Conclusion: The proper storage period for disposing the radioactive waste (clothes, bedclothes and bath cover) was 100 days by the regulation on self-disposal of radioactive waste. In addition, the storage period for disposing the liquid radioactive waste was 120 days. The current regulation for radioactive waste self-disposing was not suitable for the circumstances of each radioactive therapy facility. Therefore, it was necessary to reduce the leftover food and drinks by adequate table setting for patients, and improve the process and regulation for disposing the short-half life radioactive wastes.

  • PDF