• Title/Summary/Keyword: IoT sensor module

Search Result 83, Processing Time 0.027 seconds

Implementation of Smart Companion Dog Lead Line Integration Module using Heterogeneous Sensor Signal Monitoring (이기종 센서 신호 모니터링을 적용한 스마트 반려견 리드줄 통합 모듈 구현)

  • Cho, Joon-Ho;Kim, Bong-Hyun
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.183-188
    • /
    • 2019
  • As social perceptions of pets change, cultural attitudes toward pets are becoming more friendly. In particular, dogs have been living familiarly and closely with humans for a long time. In the changing times, various services are being used to improve the understanding of dogs and to prevent companion dogs and increase awareness of respect for life. Therefore, in this paper, we implemented a smart lead line in which IoT service and application technology are linked to the walking dog's automatic lead line. To do this, we developed a smart dog lead line by designing and implementing an integrated module in connection with heterogeneous sensors and linking it with a dog lead line. Finally, a smart dog lead line was used to collect the dog's biological signals in real time, identify the location of the dog, and provide a notification system. Through this, we believe that the culture of dog culture can be further grown.

Development of the Smallest, High-accuracy NDIR Methane Sensor Module to Detect Low Concentration (저 농도 감지를 위한 NDIR 방식의 초소형 고정도 메탄센서 모듈)

  • Kim, Dong-Hwan;Lee, Ihn;Bang, Il-Soon;Chun, Dong-Gi;Kim, Il-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.199-203
    • /
    • 2018
  • In this study, we develop a methane sensor module that can detect low concentrations below 5,000 ppm and measure up to the detection limit of 50 ppm with the NDIR method, with a long lifetime and high accuracy. Methane ($CH_4$) is one of a representative greenhouse gas, which is very explosive. Thus, it is important to quickly and accurately measure methane concentration in the air. To adjust the methane sensor for industrial field applications, a NDIR-based small sensor was implemented and characterized, where its volume was $4cm{\times}4cm{\times}2cm$ and its response time ($T_{90}$) was less than 30 sec. These results demonstrate that the proposed sensor is commercially available for low-concentration measurement, low volume, and fast response application, such as IoT sensor nodes and portable devices.

Implementation of fluid flow measuring and warning alarm system using an WeMos and an fluid flow sensor (WeMos와 유량 센서를 이용한 유속 모니터링 및 경보 알림 시스템 구현)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.139-143
    • /
    • 2019
  • Measurement of flow rate is required in various fields. Water meters are often used at home, and flow meters are used in water and sewage plants, petrochemical industries and so on.. A system is needed to monitor the flow rate in real time and notify immediately when flow rate is abnormal. Recently, with the development of the IoT it is possible to construct such devices at low cost. WeMos can be programmed with Arduino IDE as a mini wifii IoT module. The flow sensor can output a digital pulse proportional to the flow rate. In this paper, we developed the flow monitoring and warning system using WeMos and IoT technology. When the system operates, it calculates the flow rate, sends the value as JSON format to the server, monitors the flow rate as graph from the remote with the smartphone. We also implement the system to promptly send alert message to the smart phone using Pushbullet when the flow rate is abnormal.

Implement of Analysis system with Indoor Environment Monitoring Based on IoT (사물인터넷 기반 실내 환경 모니터링 분석 시스템 구현)

  • Nam, Jae-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1687-1692
    • /
    • 2019
  • In the era of the fourth industrial revolution, advanced technologies such as the Internet of Things(IoT) and big data are emerging. However, the level of application of IoT to indoor environment is very weak. Therefore, it is necessary to develop a system for analyzing air pollutants or indoor air quality through real-time monitoring using the IoT. This paper implements a system that measures indoor environmental values using Arduino and various sensors, and stores the information obtained from various sensors into a database of server. The information stored in the server was built as a database and utilized in the ventilation system or air cleaner installed in the home or company's room. In the proposed system, it is possible to check the immediate indoor environmental condition through the LED status display of the monitoring sensor module while reducing the cost of the sensor used to implement IoT technology.

Smart Warehouse Management System Utilizing IoT-based Autonomous Mobile Robot for SME Manufacturing Factory (중소제조기업을 위한 IoT기반의 자율이동모듈을 활용한 스마트 창고관리 시스템 개발)

  • Kim, Jeong-A;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.237-244
    • /
    • 2018
  • The Smart Factory level of manufacturing factories of SMEs now lacks a system for grasping the accurate inventory amount associated with inventory movements in managing warehouses at the basic level. Also, it is difficult to manage accurate materials for loss of data due to worker manual work and production method due to experience. In order to solve this problem, in this paper, automatic acquisition of inventory to minimize manual work to grasp workers' Inventory and improve automation is done. In the smart warehouse management system using the IoT-based autonomous mobile module, the autonomous mobile module acquires the data of the inventory storage while moving through the line. In order to grasp the material of the Inventory storage, The Camera module recognizes the name of the inventory storage. And Then, If output matches, the data measured by the sensor is transferred to the server. This data can be processed, saved in a database, and real-time inventory quantity and location can be grasped in a web-based monitoring environment for administrators. The Real-time Automatic Inventory (RAIC) systems is reduce manual tasks and expect the effects of automated inventory management systems.

Laboratory Environment Monitoring: Implementation Experience and Field Study in a Tertiary General Hospital

  • Kang, Seungjin;Baek, Hyunyoung;Jun, Sunhee;Choi, Soonhee;Hwang, Hee;Yoo, Sooyoung
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.371-375
    • /
    • 2018
  • Objectives: To successfully introduce an Internet of Things (IoT) system in the hospital environment, this study aimed to identify issues that should be considered while implementing an IoT based on a user demand survey and practical experiences in implementing IoT environment monitoring systems. Methods: In a field test, two types of IoT monitoring systems (on-premises and cloud) were used in Department of Laboratory Medicine and tested for approximately 10 months from June 16, 2016 to April 30, 2017. Information was collected regarding the issues that arose during the implementation process. Results: A total of five issues were identified: sensing and measuring, transmission method, power supply, sensor module shape, and accessibility. Conclusions: It is expected that, with sufficient consideration of the various issues derived from this study, IoT monitoring systems can be applied to other areas, such as device interconnection, remote patient monitoring, and equipment/environmental monitoring.

Development of Smart Device Module for Perimeter Intrusion Detection (외곽 침입 감지를 위한 스마트 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.363-370
    • /
    • 2021
  • The perimeter intrusion detection system is very important in physical security. In this study, a micro smart device (module) using MEMS sensor was developed in IoT environment for external intrusion detection. The outer intrusion detection system applying the smart device developed in this study is installed in various installation environments, such as barbed wire of various materials and shapes, the city center, the beach, and the mountain, so that it can detect external intrusion and its location as well as false alarms. As a smart sensor that can minimize the false alarm rate and economical construction cost, it is expected that it can be used for the safe operation of major facilities and prevention of disasters and crimes.

Low Rate VLC Receiver Design Using NCP302 Voltage Detector for IoT/IoL Connected Smart Homes

  • Lee, Beomhee;Mariappan, Vinayagam;Khudaybergenov, Timur;Han, Jungdo;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.50-56
    • /
    • 2018
  • The Internet of Things (IoT) and Visible Light Communication (VLC) is opening up new services in lighting industry by integrating sensory network features in addition to standard illumination functionality. In this progressive developments, the next generation lighting devices for smart homes are capable to sense the environmental conditions and transfer the captured data through lights to gateway controller to access remotely. The smart home environmental sensor information's are few kbps only so VLC systems need to built-in with low rate light connectivity to transfer data to the gateway. To provide error free communication, the quality of a received light signal is important to be considered when designing an VLC receiver. Therefore, this paper proposes the design of robust low rate IoL receiver design using NCP302 voltage detector for micro controller to adapt the IoT/IoL front end module for system integration. To evaluate the proposed system performance, the Arduino UNO based IoT/IoL controller designed with lighting, sensors and lights connectivity interfaces. The experimental result shows that the robust interference rejection is feasible on proposed VOL receiver and possible to have an error-free communication up to 10 kbps at a low SNR using OOK modulation.

Efficient Human Care System in Internet of Things Environment (IoT 환경에서의 효율적인 휴먼케어 시스템)

  • Ryu, Chang-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.890-891
    • /
    • 2015
  • With South Korea entering aging society, the problem of the elderly living alone is aggravating due to increasing health risks associated with social isolation. This should be counteracted by providing them with supports conducive to the recovery of social relationship and effective management of daily activities, such as health checkups, homecare services, chore services, and contents building for information service. This paper presents a human care system implementing miniaturization and portability for the elderly and other care recipients by integrating various contents into recipients' situation perception, direct experience, and sensor modules as a smartphone application in Internet of Things environment to facilitate their health status monitoring.

  • PDF

Development of a Mountainous Area Monitoring System based on IoT Technology (IoT 기술 기반의 산악지 모니터링 시스템 개발)

  • Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.437-446
    • /
    • 2017
  • 70 percent of Korea's territory is covered with mountains, whose difficult conditions can cause damage to facilities. Recently, the demand for facilities related to outdoor activities including monorails has been on the rise, and such facilities are much more likely to become damaged. For this reason, a monitoring system applying IoT to mountainous areas was developed and its applicability is evaluated in this study. The current status of the existing mountainous facilities and monitoring systems were reviewed, and the current wired monitoring technology was analyzed. A scenario for IoT-based monitoring was developed, and then sensor nodes were developed, which include an RF-communication module and interface, power-supply and solar-cell. A testbed was set up at K University. The same data was collected by the wireless system as had been collected by the wired one. The study findings are as follows. Firstly, by using the wireless system, it is estimated that the construction duration can be reduced by about 25 percent, while the construction costs can be reduced by about 3~52 percent. Secondly, the safety of the construction workers can be improved by making the working conditions less dangerous, such as by eliminating the need to transport cables.