• 제목/요약/키워드: IoT devices

Search Result 1,158, Processing Time 0.027 seconds

A Method for Dynamic Clustering-based Efficient Management in Large-Scale IoT Environment (대규모 IoT 컴퓨팅 환경에서 동적 클러스터링 기반 효율적 관리 기법)

  • Kim, Dae Young;La, Hyun Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.85-97
    • /
    • 2014
  • IoT devices that collect information for end users and provide various services like giving traffic or weather information to them that are located everywhere aim to raise quality of life. Currently, the number of devices has dramatically increased so that there are many companies and laboratories for developing various IoT devices in the world. However, research about IoT computing such as connecting IoT devices or management is at an early stage. A server node that manages lots of IoT device in IoT computing environment is certainly needed. But, it is difficult to manage lots of devices efficiently. However, anyone cannot surly know about how many servers are needed or where they are located in the environment. In this paper, we suggest a method that is a way to dynamic clustering IoT computing environment by logical distance among devices. With our proposed method, we can ensure to manage the quality in large-scale IoT environment efficiently.

A Study on Log Collection to Analyze Causes of Malware Infection in IoT Devices in Smart city Environments

  • Donghyun Kim;Jiho Shin;Jung Taek Seo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.17-26
    • /
    • 2023
  • A smart city is a massive internet of things (IoT) environment, where all terminal devices are connected to a network to create and share information. In accordance with massive IoT environments, millions of IoT devices are connected, and countless data are generated in real time. However, since heterogeneous IoT devices are used, collecting the logs for each IoT device is difficult. Due to these issues, when an IoT device is invaded or is engaged in malicious behavior, such as infection with malware, it is difficult to respond quickly, and additional damage may occur due to information leakage or stopping the IoT device. To solve this problem, in this paper, we propose identifying the attack technique used for initial access to IoT devices through MITRE ATT&CK, collect the logs that can be generated from the identified attack technique, and use them to identify the cause of malware infection.

A Research on IoT Security Technology based on Blockchain and Lightweight Cryptographic Algorithms

  • Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.343-348
    • /
    • 2023
  • As the IoT market continues to grow, security threats to IoT devices with limited resources are also increasing. However, the application of security technology to the existing system to IoT devices with limited resources is impossible due to the inherent characteristics of IoT devices. Various methods for solving related problems have been studied in existing studies to solve this problem. Therefore, this study analyzes the characteristics of domestic IoT authentication standards and existing research to propose an algorithm that applies blockchain-based authentication and lightweight encryption algorithms to IoT equipment with limited resources. In this study, a key generation method was applied using a Lamport hash-chain and data integrity between IoT devices were provided using a Merkle Tree, and an LEA encryption algorithm was applied using confidentiality in data communication. In the experiment, it was verified that the efficiency is high when the LEA encryption algorithm, which is a lightweight encryption algorithm, is applied to IoT devices with limited resources.

A Study on Collection Method of IoT Information for The Adaptation of Web Services (웹 서비스 적용을 위한 IoT 정보 수집 방법에 관한 연구)

  • Sim, Sung-Ho;Han, Jung-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.71-76
    • /
    • 2017
  • It is necessary to develop a service that meets various environmental requirements so that the Internet of things can be applied to the fourth industry in overall. This paper presents a method for extracting IoT devices information to change the current provider centric service provision environment in order to construct a user centered service provision environment for Web services. Also, it provides users to utilize the appropriate web services through taking advantage of IoT devices information. The existing service provision environment is focused on the method of selecting the service using the provider service information, thus, it is considered necessary for a user-oriented service search method to be in need. In this study, the service list is provided to the user by combining provider information and information extracted from IoT Devices. IoT information collection generates information by separating context information such as information between IoT devices and users and event information between devices through identifiers. In this paper, we propose a development of a user centric service environment by presenting users with a necessary service list through the proposed IoT information.

Analysis of IoT Open-Platform Cryptographic Technology and Security Requirements (IoT 오픈 플랫폼 암호기술 현황 및 보안 요구사항 분석)

  • Choi, Jung-In;Oh, Yoon-Seok;Kim, Do-won;Choi, Eun Young;Seo, Seung-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.7
    • /
    • pp.183-194
    • /
    • 2018
  • With the rapid development of IoT(Internet of Things) technology, various convenient services such as smart home and smart city have been realized. However, IoT devices in unmanned environments are exposed to various security threats including eavesdropping and data forgery, information leakage due to unauthorized access. To build a secure IoT environment, it is necessary to use proper cryptographic technologies to IoT devices. But, it is impossible to apply the technologies applied in the existing IT environment, due to the limited resources of the IoT devices. In this paper, we survey the classification of IoT devices according to the performance and analyze the security requirements for IoT devices. Also we survey and analyze the use of cryptographic technologies in the current status of IoT open standard platform such as AllJoyn, oneM2M, IoTivity. Based on the research of cryptographic usage, we examine whether each platform satisfies security requirements. Each IoT open platform provides cryptographic technology for supporting security services such as confidentiality, integrity, authentication an authorization. However, resource constrained IoT devices such as blood pressure monitoring sensors are difficult to apply existing cryptographic techniques. Thus, it is necessary to study cryptographic technologies for power-limited and resource constrained IoT devices in unattended environments.

Implement IoT device Authentication System (IoT 단말 인증 시스템 구현)

  • Kang, Dong-Yeon;Jeon, Ji-Soo;Han, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.344-345
    • /
    • 2022
  • ogy is being used in many fields, such as smart farms, smart oceans, smart homes, and smart energy. Various IoT terminals are used for these IoT services. Here, IoT devices are physically installed in various places. A malicious attacker can access the IoT service using an unauthorized IoT device, access unauthorized important information, and then modify it. In this study, to solve these problems, we propose an authentication system for IoT devices used in IoT services. The IoT device authentication system proposed in this study consists of an authentication module mounted on the IoT device and an authentication module of the IoT server. If the IoT device authentication system proposed in this study is used, only authorized IoT devices can access the service and access of unauthorized IoT devices can be denied. Since this study proposes only the basic IoT device authentication mechanism, additional research on additional IoT device authentication functions according to the security strength is required.IoT technol

  • PDF

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

A Key Management Technique Based on Topographic Information Considering IoT Information Errors in Cloud Environment (클라우드 환경에서 IoT 정보 오류를 고려한 지형 정보 기반의 키 관리 기법)

  • Jeong, Yoon-Su;Choi, Jeong-hee
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.233-238
    • /
    • 2020
  • In the cloud environment, IoT devices using sensors and wearable devices are being applied in various environments, and technologies that accurately determine the information generated by IoT devices are being actively studied. However, due to limitations in the IoT environment such as power and security, information generated by IoT devices is very weak, so financial damage and human casualties are increasing. To accurately collect and analyze IoT information, this paper proposes a topographic information-based key management technique that considers IoT information errors. The proposed technique allows IoT layout errors and groups topographic information into groups of dogs in order to secure connectivity of IoT devices in the event of arbitrary deployment of IoT devices in the cloud environment. In particular, each grouped terrain information is assigned random selected keys from the entire key pool, and the key of the terrain information contained in the IoT information and the probability-high key values are secured with the connectivity of the IoT device. In particular, the proposed technique can reduce information errors about IoT devices because the key of IoT terrain information is extracted by seed using probabilistic deep learning.

Dynamic Mediation Methods for Resolving Mismatch Problems between IoT Context Exchange Schemes (IoT 컨텍스트 교환 방식 불일치의 동적 중재 기법)

  • Lee, Jae Yoo;La, Hyun Jung;Kim, Soo Dong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.756-761
    • /
    • 2015
  • With the emergence of the Internet-of-Things (IoT) paradigm, there is a growing demand for personalized services using IoT contexts acquired from heterogeneous IoT devices. However, due to the mismatch between IoT context exchange schemes of context-aware services and IoT devices, IoT applications can acquire IoT contexts only from IoT devices that support the same IoT context exchange schemes. In this paper, we propose dynamic methods to mediate those mismatches on the IoT context exchange schemes. With the proposed mediation methods, context-aware services can collect IoT contexts from heterogeneous IoT devices without considering their IoT context exchange schemes.

Software Engineering Principles for the Development of Power-Efficient Mobile IoT Devices (파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학 원칙)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.762-767
    • /
    • 2015
  • An Internet of Things (IoT) is a system where various "things" are connected to each other via a wired/wireless network, and where information is gathered, processed, and interchanged/shared. One of the important actors in IoT is a mobile IoT device (such as a smartphone or tablet). These devices tend to consume a large amount of power in order to provide various high performance application services; however, as the devices cannot be supplied with power all the time, efficient power management is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, operating systems, mobile IoT platforms, and applications. In order to develop power-efficient mobile IoT devices, a method is needed to systematically analyze these relationships and manage power based on a clear understanding of them. To address this problem, software engineering principles for the development of power-efficient mobile IoT devices are presented in this paper. The feasibility of the proposed principles have been validated in the domain of smartphone camera power management.