• Title/Summary/Keyword: IoT Systems

Search Result 906, Processing Time 0.028 seconds

Smart healthcare policy trends using IoT technology (IoT 기술을 활용한 밀폐공간 사고 예방 사례 연구)

  • Choi, Hun;Choi, YooJung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.296-297
    • /
    • 2018
  • In recent years, as the number of death in accidents have increased in the working environment, the safety issue has emerged as an important social issue. Despite efforts to reduce safety accidents through many existing safety-related policies and systems, accident prevention is limited. Accident prevention services using IoT technology have been commercialized recently and the effect is very high. In this study, IOT technology is used to investigate the latest cases of reducing death accidents in the work environment.

  • PDF

Lightweight End-to-End Blockchain for IoT Applications

  • Lee, Seungcheol;Lee, Jaehyun;Hong, Sengphil;Kim, Jae-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3224-3242
    • /
    • 2020
  • Internet of Things (IoT) networks composed of a large number of sensors and actuators generate a huge volume of data and control commands, which should be enforced by strong data reliability. The end-to-end data reliability of IoT networks is an essential industrial enabler. Blockchain technology can provide strong data reliability and integrity within IoT networks. We designed a lightweight end-to-end blockchain network that applies to common IoT applications. Its enhanced modular architecture and lightweight consensus mechanism guarantee its practical applicability for general IoT applications. In addition, the proposed blockchain network is highly software compatible because it adopts the Hyperledger development environment. Directly embedding the proposed blockchain middleware platform in small computing devices proves its practicability.

Analysis of the Vulnerability of the IoT by the Scenario (시나리오 분석을 통한 사물인터넷(IoT)의 취약성 분석)

  • Hong, Sunghyuck;Sin, Hyeon-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.1-7
    • /
    • 2017
  • As the network environment develops and speeds up, a lot of smart devices is developed, and a high-speed smart society can be realized while allowing people to interact with objects. As the number of things Internet has surged, a wide range of new security risks and problems have emerged for devices, platforms and operating systems, communications, and connected systems. Due to the physical characteristics of IoT devices, they are smaller in size than conventional systems, and operate with low power, low cost, and relatively low specifications. Therefore, it is difficult to apply the existing security solution used in the existing system. In addition, IoT devices are connected to the network at all times, it is important to ensure that personal privacy exposure, such as eavesdropping, data tampering, privacy breach, information leakage, unauthorized access, Significant security issues can arise, including confidentiality and threats to facilities. In this paper, we investigate cases of security threats and cases of network of IoT, analyze vulnerabilities, and suggest ways to minimize property damage by Internet of things.

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

IoT Security and Machine Learning

  • Almalki, Sarah;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.103-114
    • /
    • 2022
  • The Internet of Things (IoT) is one of the fastest technologies that are used in various applications and fields. The concept of IoT will not only be limited to the fields of scientific and technical life but will also gradually spread to become an essential part of our daily life and routine. Before, IoT was a complex term unknown to many, but soon it will become something common. IoT is a natural and indispensable routine in which smart devices and sensors are connected wirelessly or wired over the Internet to exchange and process data. With all the benefits and advantages offered by the IoT, it does not face many security and privacy challenges because the current traditional security protocols are not suitable for IoT technologies. In this paper, we presented a comprehensive survey of the latest studies from 2018 to 2021 related to the security of the IoT and the use of machine learning (ML) and deep learning and their applications in addressing security and privacy in the IoT. A description was initially presented, followed by a comprehensive overview of the IoT and its applications and the basic important safety requirements of confidentiality, integrity, and availability and its application in the IoT. Then we reviewed the attacks and challenges facing the IoT. We also focused on ML and its applications in addressing the security problem on the IoT.

Smart Sensor Management System Supporting Service Plug-In in MQTT-Based IIoT Applications

  • Lee, Young-Ran;Kim, Sung-Ki
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Industrial IoT applications, including smart factories, require two problem-solving to build data monitoring systems required by services from distributed IoT sensors (smart sensors). One is to overcome proprietary protocols, data formats, and hardware differences and to uniquely identify and connect IoT sensors, and the other is to overcome the problem of changing the server-side data storage structure and sensor data transmission format according to the addition or change of service or IoT sensors. The IEEE 1451.4 standard-based or IPMI specification-based smart sensor technology supports the development of plug-and-play sensors that solve the first problem. However, there is a lack of research that requires a second problem-solving, which requires support for the plug-in of IoT sensors into remote services. To propose a solution for the integration of these two problem-solving, we present a IoT sensor platform, a service system architecture, and a service plugin protocol for the MQTT-based IIoT application environment.

Analysis of Public Sector Sharing Rate based on the IoT Device Classification Methodology (사물인터넷(IoT) 기기 분류 체계 기반 공공분야 점유율 분석)

  • Lee, Hyung-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The Internet of Things (IoT) provides data convergence and sharing functions, and IoT technology is the most fundamental core technology in creating new services by convergence of various cutting-edge technologies. However, there are different classification systems for the Internet of Things, and when it is limited to the domestic public sector, it is difficult to properly grasp the current status of which devices are installed and operated with what share, and systematic data or research The results are very difficult to find. Therefore, in this study, the relevance of the classification system for IoT devices was analyzed according to reality based on sales, shipments, and growth rate, and based on this, the actual share of IoT devices among domestic public institutions was analyzed in detail. The derived detailed analysis results are expected to be efficiently utilized in the process of selecting IoT devices for research and analysis to advance information protection technology such as responding to malicious code attacks on IoT devices, analyzing incidents, and strengthening security vulnerabilities.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Laboratory Environment Monitoring: Implementation Experience and Field Study in a Tertiary General Hospital

  • Kang, Seungjin;Baek, Hyunyoung;Jun, Sunhee;Choi, Soonhee;Hwang, Hee;Yoo, Sooyoung
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.371-375
    • /
    • 2018
  • Objectives: To successfully introduce an Internet of Things (IoT) system in the hospital environment, this study aimed to identify issues that should be considered while implementing an IoT based on a user demand survey and practical experiences in implementing IoT environment monitoring systems. Methods: In a field test, two types of IoT monitoring systems (on-premises and cloud) were used in Department of Laboratory Medicine and tested for approximately 10 months from June 16, 2016 to April 30, 2017. Information was collected regarding the issues that arose during the implementation process. Results: A total of five issues were identified: sensing and measuring, transmission method, power supply, sensor module shape, and accessibility. Conclusions: It is expected that, with sufficient consideration of the various issues derived from this study, IoT monitoring systems can be applied to other areas, such as device interconnection, remote patient monitoring, and equipment/environmental monitoring.

A Resource Planning Policy to Support Variable Real-time Tasks in IoT Systems (사물인터넷 시스템에서 가변적인 실시간 태스크를 지원하는 자원 플래닝 정책)

  • Hyokyung Bahn;Sunhwa Annie Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.47-52
    • /
    • 2023
  • With the growing data size and the increased computing load in machine learning, energy-efficient resource planning in IoT systems is becoming increasingly important. In this paper, we suggest a new resource planning policy for real-time workloads that can be fluctuated over time in IoT systems. To handle such situations, we categorize real-time tasks into fixed tasks and variable tasks, and optimize the resource planning for various workload conditions. Based on this, we initiate the IoT system with the configuration for the fixed tasks, and when variable tasks are activated, we update the resource planning promptly for the situation. Simulation experiments show that the proposed policy saves the processor and memory energy significantly.