• Title/Summary/Keyword: IoT Fault

Search Result 47, Processing Time 0.233 seconds

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.

A Study on Fault Classification of Machining Center using Acceleration Data Based on 1D CNN Algorithm (1D CNN 알고리즘 기반의 가속도 데이터를 이용한 머시닝 센터의 고장 분류 기법 연구)

  • Kim, Ji-Wook;Jang, Jin-Seok;Yang, Min-Seok;Kang, Ji-Heon;Kim, Kun-Woo;Cho, Young-Jae;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.29-35
    • /
    • 2019
  • The structure of the machinery industry due to the 4th industrial revolution is changing from precision and durability to intelligent and smart machinery through sensing and interconnection(IoT). There is a growing need for research on prognostics and health management(PHM) that can prevent abnormalities in processing machines and accurately predict and diagnose conditions. PHM is a technology that monitors the condition of a mechanical system, diagnoses signs of failure, and predicts the remaining life of the object. In this study, the vibration generated during machining is measured and a classification algorithm for normal and fault signals is developed. Arbitrary fault signal is collected by changing the conditions of un stable supply cutting oil and fixing jig. The signal processing is performed to apply the measured signal to the learning model. The sampling rate is changed for high speed operation and performed machine learning using raw signal without FFT. The fault classification algorithm for 1D convolution neural network composed of 2 convolution layers is developed.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

The Monitoring System with PV Module-level Fault Diagnosis Algorithm (태양전지모듈 고장 진단 알고리즘을 적용한 모니터링시스템)

  • Ko, Suk-Whan;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul;Song, Hyung-June;Shin, Woo-Gyun;Kang, Gi-Hwan;Choi, Jung-Rae;Kang, In-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • The objects of PV (Photovoltaic) monitoring system is to reduce the loss of system and operation and maintenance costs. In case of PV plants with configured of centralized inverter type, only 1 PV module might be caused a large loss in the PV plant. For this reason, the monitoring technology of PV module-level that find out the location of the fault module and reduce the system losses is interested. In this paper, a fault diagnosis algorithm are proposed using thermal and electrical characteristics of PV modules under failure. In addition, the monitoring system applied with proposed algorithm was constructed. The wireless sensor using LoRa chip was designed to be able to connect with IoT device in the future. The characteristics of PV module by shading is not failure but it is treated as a temporary failure. In the monitoring system, it is possible to diagnose whether or not failure of bypass diode inside the junction box. The fault diagnosis algorithm are developed on considering a situation such as communication error of wireless sensor and empirical performance evaluation are currently conducting.

Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys (해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발)

  • Ju-Yong Lee;Jae-Young Lee;Jiwoo Lee;Sangmun Shin;Jun-hyuk Jang;Jun-Hee Han
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.186-197
    • /
    • 2023
  • In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

Applying Parallel Processing Technique in Parallel Circuit Testing Application for improve Circuit Test Ability in Circuit manufacturing

  • Prabhavat, Sittiporn;Nilagupta, Pradondet
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.792-793
    • /
    • 2005
  • Circuit testing process is very important in IC Manufacturing there are two ways in research for circuit testing improvement. These are ATPG Tool Design and Test simulation application. We are interested in how to use parallel technique such as one-side communication, parallel IO and dynamic Process with data partition for circuit testing improvement and we use one-side communication technique in this paper. The parallel ATPG Tool can reduce the test pattern sets of the circuit that is designed in laboratory for make sure that the fault is not occur. After that, we use result for parallel circuit test simulation to find fault between designed circuit and tested circuit. From the experiment, We use less execution time than non-parallel Process. And we can set more parameter for less test size. Previous experiment we can't do it because some parameter will affect much waste time. But in the research, if we use the best ATPG Tool can optimize to least test sets and parallel circuit testing application will not work. Because there are too little test set for circuit testing application. In this paper we use a standard sequential circuit of ISCAS89.

  • PDF

DART: Fast and Efficient Distributed Stream Processing Framework for Internet of Things

  • Choi, Jang-Ho;Park, Junyong;Park, Hwin Dol;Min, Ok-gee
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • With the advent of the Internet-of-Things paradigm, the amount of data production has grown exponentially and the user demand for responsive consumption of data has increased significantly. Herein, we present DART, a fast and lightweight stream processing framework for the IoT environment. Because the DART framework targets a geospatially distributed environment of heterogeneous devices, the framework provides (1) an end-user tool for device registration and application authoring, (2) automatic worker node monitoring and task allocations, and (3) runtime management of user applications with fault tolerance. To maximize performance, the DART framework adopts an actor model in which applications are segmented into microtasks and assigned to an actor following a single responsibility. To prove the feasibility of the proposed framework, we implemented the DART system. We also conducted experiments to show that the system can significantly reduce computing burdens and alleviate network load by utilizing the idle resources of intermediate edge devices.

Transient Multipath routing protocol for low power and lossy networks

  • Lodhi, Muhammad Ali;Rehman, Abdul;Khan, Meer Muhammad;Asfand-e-yar, Muhammad;Hussain, Faisal Bashir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2002-2019
    • /
    • 2017
  • RPL routing protocol for low-power and lossy networks is an Internet Engineering Task Force (IETF) recommended IPv6 based protocol for routing over Low power Lossy Networks (LLNs). RPL is proposed for networks with characteristics like small packet size, low bandwidth, low data rate, lossy wireless links and low power. RPL is a proactive routing protocol that creates a Directed Acyclic Graph (DAG) of the network topology. RPL is increasingly used for Internet of Things (IoT) which comprises of heterogeneous networks and applications. RPL proposes a single path routing strategy. The forwarding technique of RPL does not support multiple paths between source and destination. Multipath routing is an important strategy used in both sensor and ad-hoc network for performance enhancement. Multipath routing is also used to achieve multi-fold objectives including higher reliability, increase in throughput, fault tolerance, congestion mitigation and hole avoidance. In this paper, M-RPL (Multi-path extension of RPL) is proposed, which aims to provide temporary multiple paths during congestion over a single routing path. Congestion is primarily detected using buffer size and packet delivery ratio at forwarding nodes. Congestion is mitigated by creating partially disjoint multiple paths and by avoiding forwarding of packets through the congested node. Detailed simulation analysis of M-RPL against RPL in both grid and random topologies shows that M-RPL successfully mitigates congestion and it enhances overall network throughput.

Pub/Sub-based Sensor virtualization framework for Cloud environment

  • Ullah, Mohammad Hasmat;Park, Sung-Soon;Nob, Jaechun;Kim, Gyeong Hun
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.109-119
    • /
    • 2015
  • The interaction between wireless sensors such as Internet of Things (IoT) and Cloud is a new paradigm of communication virtualization to overcome resource and efficiency restriction. Cloud computing provides unlimited platform, resources, services and also covers almost every area of computing. On the other hand, Wireless Sensor Networks (WSN) has gained attention for their potential supports and attractive solutions such as IoT, environment monitoring, healthcare, military, critical infrastructure monitoring, home and industrial automation, transportation, business, etc. Besides, our virtual groups and social networks are in main role of information sharing. However, this sensor network lacks resource, storage capacity and computational power along with extensibility, fault-tolerance, reliability and openness. These data are not available to community groups or cloud environment for general purpose research or utilization yet. If we reduce the gap between real and virtual world by adding this WSN driven data to cloud environment and virtual communities, then it can gain a remarkable attention from all over, along with giving us the benefit in various sectors. We have proposed a Pub/Sub-based sensor virtualization framework Cloud environment. This integration provides resource, service, and storage with sensor driven data to the community. We have virtualized physical sensors as virtual sensors on cloud computing, while this middleware and virtual sensors are provisioned automatically to end users whenever they required. Our architecture provides service to end users without being concerned about its implementation details. Furthermore, we have proposed an efficient content-based event matching algorithm to analyze subscriptions and to publish proper contents in a cost-effective manner. We have evaluated our algorithm which shows better performance while comparing to that of previously proposed algorithms.