• Title/Summary/Keyword: IoT Devices Security

Search Result 383, Processing Time 0.032 seconds

A Study on Security Requirments Analysis through Security Threat Modeling of Home IoT Appliance (Home IoT 가전의 보안위협모델링을 통한 보안요구사항 분석에 관한 연구)

  • Yun, Suk-Jin;Kim, Jungduk
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.113-124
    • /
    • 2019
  • Today many companies are offering IoT-enabled products and place emphasis on security from the planning stage to protect their products and user information from external threats. The present security levels, however, remain low because the time and resources invested in developing security requirements for each device are far from enough to meet the needs of a wide range of IoT products. Nevertheless, vulnerabilities of IoT devices have been reported continuously, which calls for more detailed security requirements for home IoT devices. In this context, this research identified threats of home IoT systems by using Microsoft Threat Modeling Tool. It then suggested measures to enhance the security of home IoT devices by developing security assessment items through comparative analysis of the identified threats, domestic and global vulnerability assessment standards and related research. It also verified the effectiveness of the developed security requirements by testing them against the existing ones, and the results revealed the security requirements developed in this research proved to be more effective in identifying vulnerabilities.

Institutional Improvements for Security of IoT Devices (IoT 기기의 보안성 확보를 위한 제도적 개선방안)

  • Lee, Donghyeok;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.607-615
    • /
    • 2017
  • Recently, IoT products with various functions are being developed. Through the combination of objects and information technology, convenient services that have not been imagined before are emerging. For a secure IoT environment, product security must be considered. However, the existing IoT products have various problems such as security vulnerability. In order to secure the security of IoT products, technical countermeasures as well as policy responses are needed. However, the legislation related to current IoT products has a limit to guarantee safety in IoT environment. In this paper, we analyze the limitations of the current legal system of IoT, and suggests ways to improve it.

A Research on the improvement of domestic IoT security certification system (국내 IoT 보안인증 제도 개선 연구)

  • Lee, Yongpil;Suh, YungJin;Lee, SangGeol
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.79-92
    • /
    • 2021
  • In a society where ICT technology is converged, the use of various network-connected devices such as IoT is spreading. Network-connected devices are inevitably exposed to the threat of hacking such as information leakage, and countermeasures need to be prepared to respond. Security certification system for IoT devices has been introduced to promote security of IoT products, and for this purpose, legalization and standardization of certification standards and methods are in progress. In line with this, in Korea, as the Information and Communication Network Act was revised in 2020, ICT convergence devices connected to the network were newly defined as "information and communication network connected devices," and the basis for the security certification system is being established. We summarized related domestic and foreign trends and suggest specific considerations for implementing the security certification system for IoT devices in South Korea.

Cloud security authentication platform design to prevent user authority theft and abnormal operation during remote control of smart home Internet of Things (IoT) devices (스마트 홈 사물인터넷 기기(IoT)의 원격제어 시 사용자 권한 탈취 및 이상조작 방지를 위한 클라우드 보안인증 플랫폼 설계)

  • Yoo Young Hwan
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • The use of smart home appliances and Internet of Things (IoT) devices is growing, enabling new interactions and automation in the home. This technology relies heavily on mobile services which leaves it vulnerable to the increasing threat of hacking, identity theft, information leakage, serious infringement of personal privacy, abnormal access, and erroneous operation. Confirming or proving such security breaches have occurred is also currently insufficient. Furthermore, due to the restricted nature of IoT devices, such as their specifications and operating environments, it is difficult to provide the same level of internet security as personal computers. Therefore, to increase the security on smart home IoT devices, attention is needed on (1) preventing hacking and user authority theft; (2) disabling abnormal manipulation; and (3) strengthening audit records for device operation. In response to this, we present a plan to build a cloud security authentication platform which features security authentication management functionality between mobile terminals and IoT devices.

A Study on Systematic Firmware Security Analysis Method for IoT Devices (체계적인 IoT 기기의 펌웨어 보안 분석 방법에 관한 연구)

  • Kim, Yejun;Gim, Jeonghyeon;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.31-49
    • /
    • 2021
  • IoT devices refer to embedded devices that can communicate with networks. Since there are various types of IoT devices and they are widely used around us, in the event of an attack, damages such as personal information leakage can occur depending on the type of device. While the security team analyzes IoT devices, they should target firmware as well as software interfaces since IoT devices are operated by both of them. However, the problem is that it is not easy to extract and analyze firmware and that it is not easy to manage product quality at a certain level even if the same target is analyzed according to the analyst's expertise within the security team. Therefore, in this paper, we intend to establish a vulnerability analysis process for the firmware of IoT devices and present available tools for each step. Besides, we organized the process from firmware acquisition to analysis of IoT devices produced by various commercial manufacturers, and we wanted to prove their validity by applying it directly to drone analysis by various manufacturers.

A Study on the Security Framework for IoT Services based on Cloud and Fog Computing (클라우드와 포그 컴퓨팅 기반 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1928-1939
    • /
    • 2017
  • Fog computing is another paradigm of the cloud computing, which extends the ubiquitous services to applications on many connected devices in the IoT (Internet of Things). In general, if we access a lot of IoT devices with existing cloud, we waste a huge amount of bandwidth and work efficiency becomes low. So we apply the paradigm called fog between IoT devices and cloud. The network architecture based on cloud and fog computing discloses the security and privacy issues according to mixed paradigm. There are so many security issues in many aspects. Moreover many IoT devices are connected at fog and they generate much data, therefore light and efficient security mechanism is needed. For example, with inappropriate encryption or authentication algorithm, it causes a huge bandwidth loss. In this paper, we consider issues related with data encryption and authentication mechanism in the network architecture for cloud and fog-based M2M (Machine to Machine) IoT services. This includes trusted encryption and authentication algorithm, and key generation method. The contribution of this paper is to provide efficient security mechanisms for the proposed service architecture. We implemented the envisaged conceptual security check mechanisms and verified their performance.

Enhancing Internet of Things Security with Random Forest-Based Anomaly Detection

  • Ahmed Al Shihimi;Muhammad R Ahmed;Thirein Myo;Badar Al Baroomi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2024
  • The Internet of Things (IoT) has revolutionized communication and device operation, but it has also brought significant security challenges. IoT networks are structured into four levels: devices, networks, applications, and services, each with specific security considerations. Personal Area Networks (PANs), Local Area Networks (LANs), and Wide Area Networks (WANs) are the three types of IoT networks, each with unique security requirements. Communication protocols such as Wi-Fi and Bluetooth, commonly used in IoT networks, are susceptible to vulnerabilities and require additional security measures. Apart from physical security, authentication, encryption, software vulnerabilities, DoS attacks, data privacy, and supply chain security pose significant challenges. Ensuring the security of IoT devices and the data they exchange is crucial. This paper utilizes the Random Forest Algorithm from machine learning to detect anomalous data in IoT devices. The dataset consists of environmental data (temperature and humidity) collected from IoT sensors in Oman. The Random Forest Algorithm is implemented and trained using Python, and the accuracy and results of the model are discussed, demonstrating the effectiveness of Random Forest for detecting IoT device data anomalies.

Blockchain-Based IoT Device Authentication Scheme (블록체인 기반 IoT 디바이스 인증 스킴)

  • Park, Byeong-ju;Lee, Tae-jin;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.343-351
    • /
    • 2017
  • With ICT technology develops, IoT environment is attracting attention. However, IoT devices have various CPU performance as much as various purpose of use. Some IoT devices use the cpu that doesn't support public key cryptogrphy or crypto acceleration. In this paper, we study Blockchain-based IoT Device Authentication Scheme that provides authentication, integirity and non-repudation through analysis of Lamport Hash-chain, Lamport Signature, Blockchain and existing Authentication protocols. The proposed scheme requires only simple hash operation in IoT devices and it can operate in low performance IoT device, thus ensuring secure authentication in IoT environment.

Scheme of Secure IoT based Group communication (확장성과 보안을 보장하는 IoT 디바이스 기반의 그룹통신 기법)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.98-103
    • /
    • 2021
  • In this study, we propose a group communication technique that guarantees security and expandability by configuring a network consisting of IoT terminals equipped with security functions. As the number of devices participating in the network increases, network resources are proportionally reduced, and adding a security function to the IoT device increases the delay time due to encryption in the IoT device. If the error rate that occurs in the network increases, network resources are quickly consumed due to retransmission. Therefore, IoT terminals are grouped to ensure scalability while supporting security, reducing the consumption of network resources even when the number of participating nodes increases, thus ensuring scalability. For the future implementation, the encryption method used in IoT terminals considered the standard of IEEE802.5.4, and the standardization trend was investigated and classified. The proposed method applies IoT devices that provide security functions of the IEEE802.5.4 standard to the group communication base to ensure reliability and scalability. In the performance evaluation, the effectiveness of the proposed method was confirmed by comparing the delay times when grouping IoT devices with security functions through simulation.

Implementation of crypto key-based IoT network security system (암호키 기반 IoT 네트워크 보안 시스템 구현)

  • Jeon, Ji-Soo;Kang, Dong-Yeon;Han, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.349-350
    • /
    • 2022
  • As research on IT convergence continues, the scope of IoT (Internet of Things) services continues to expand. The IoT service uses a device suitable for the purpose. These IoT devices require an authentication function. In addition, in IoT services that handle important information such as personal information, security of transmission data is required. In this study, we implement a crypto key-based IoT network security system that can authenticate devices for IoT services and securely transmit data between devices. Through this study, IoT service can authenticate the device itself and maintain the confidentiality of transmitted data. However, since it is an IoT service, additional research on the application efficiency of the encryption algorithm is required.

  • PDF