DOI QR코드

DOI QR Code

확장성과 보안을 보장하는 IoT 디바이스 기반의 그룹통신 기법

Scheme of Secure IoT based Group communication

  • Kim, Ki-Young (Dept. of Software Engineering, Seoil University)
  • 투고 : 2021.02.04
  • 심사 : 2021.02.17
  • 발행 : 2021.02.28

초록

본 연구에서는 보안기능을 탑재한 IoT 단말로 구성된 네트워크를 구성하여 보안성과 확장성을 보장하는 그룹통신 기법을 제안한다. 네트워크상에 참여하는 단말의 수가 증가하면 네트워크 자원도 비례하여 감소되며 IoT 단말에 보안기능을 추가하면 IoT 단말에서 암호화로 인해 지연시간이 증가하게 된다. 네트워크에 발생하는 에러율이 높아지면 재전송으로 인해 네트워크 자원은 빠르게 잠식되게 된다. 따라서 보안성을 지원하면서 확장성을 보장하도록 IoT 단말을 그룹화 하여 참여 노드가 증가하여도 네트워크 자원의 소모를 감소시켜 확장성을 보장할 수 있도록 하였다. 향후 구현을 위해 IoT 단말에서 사용하는 암호화 방식은 IEEE802.5.4의 표준을 고려하였으며 표준화 동향을 조사 분류하였다. 제안하는 방식은 IEEE802.5.4 표준의 보안기능을 제공하는 IoT 디바이스를 그룹통신 기반에 적용하여 신뢰성과 확장성 보장이 가능하도록 하였다. 성능평가는 시뮬레이션을 통해 보안기능을 갖는 IoT 디바이스를 기존 방식과 그릅통신으로 구성하였을 때의 지연시간을 비교하여 제안한 방법의 효율성을 확인하였다.

In this study, we propose a group communication technique that guarantees security and expandability by configuring a network consisting of IoT terminals equipped with security functions. As the number of devices participating in the network increases, network resources are proportionally reduced, and adding a security function to the IoT device increases the delay time due to encryption in the IoT device. If the error rate that occurs in the network increases, network resources are quickly consumed due to retransmission. Therefore, IoT terminals are grouped to ensure scalability while supporting security, reducing the consumption of network resources even when the number of participating nodes increases, thus ensuring scalability. For the future implementation, the encryption method used in IoT terminals considered the standard of IEEE802.5.4, and the standardization trend was investigated and classified. The proposed method applies IoT devices that provide security functions of the IEEE802.5.4 standard to the group communication base to ensure reliability and scalability. In the performance evaluation, the effectiveness of the proposed method was confirmed by comparing the delay times when grouping IoT devices with security functions through simulation.

키워드

참고문헌

  1. Jang-Won Kim, "A Study on Smart Door Lock using Internet of Things", Korea Information Electron Communication Technology Journal of Korea Institute of Information, Electronics, and Communication Technology 13(6), pp.539-544, 2020.
  2. I. Yaqoob and al. Internet of Things Architecture: Recent Advances, Taxonomy, Req , IEEE Wireless Communications, vol. 24, no 3, pp. 10 16, 2017. https://doi.org/10.1109/MWC.2017.1600421
  3. N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, Goals, RFC 4919, 2007.
  4. ZigBee Alliance, ZigBee specification, pp. 344-346, 2006.
  5. S. A. Kumar, "Security in Internet of Things: Challenges, Solutions and Future Directions", pp. 5772-578, 2016.
  6. S. Chen, Z. Honggang and L. Xian, "Energy Group based Random Access Method for M2M Communications," 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, pp. 1-5, 2018.
  7. "IEEE Draft Standard for Low-Rate Wireless Networks Amendment Defining Support for Advanced Encryption Standard (AES)-256 Encryption and Security Extensions," in IEEE P802.15.4y/ D2, October 2020 , vol., no., pp.1-20, 2020.
  8. K. Sarwar, S. Yongchareon and J. Yu, "Lightweight ECC with Fragile Zero-Watermarking for Internet of Things Security," 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, pp. 867-872, 2018.
  9. E. Gyamfi, J. A. Ansere and L. Xu, "ECC Based Lightweight Cybersecurity Solution For IoT Networks Utilising Multi-Access Mobile Edge Computing," 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, pp. 149-154, 2019.