• Title/Summary/Keyword: IoT Device Security

Search Result 205, Processing Time 0.022 seconds

Design of Device Authentication Protocol Based on C-PBFT in a Smart Home Environment (스마트 홈 환경에서 C-PBFT 기반의 디바이스 인증 프로토콜 설계)

  • Kim, Jeong-Ho;Heo, Jae-Wook;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.550-558
    • /
    • 2019
  • As the scale of the Internet of Things (IoT) environment grows and develops day by day, the information collected and shared through IoT devices becomes increasingly diverse and more common. However, because IoT devices have limitations on computing power and a low power capacity due to their miniaturized size, it is difficult to apply security technologies like encryption and authentication that have been directly applied in the previous Internet environment, making the IoT vulnerable to security threats. Because of this weakness, important information that needs to be delivered safely and accurately is exposed to the threat of malicious exploitation, such as data forgery, data leakage, and infringement of personal information. In order to overcome this threat, various security studies are being actively conducted to compensate for the weaknesses in IoT environment devices. In particular, since various devices interact, and share and communicate information collected in the IoT environment, each device should be able to communicate with reliability. With regard to this, various studies have been carried out on techniques for device authentication. This study examines the limitations and problems of the authentication techniques that have been studied thus far, and proposes technologies that can certify IoT devices for safe communication between reliable devices in the Internet environment.

Development of Motocycle's Anti-theft Device Based on NFC (NFC기반의 보안인증을 통한 이륜차 도난방지장치 구현)

  • Jin, Taeseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.165-170
    • /
    • 2016
  • Recently, IoT(Internet of Things) technology is widely applied in not only our everyday lives but also in industry, medical field and security system. NFC system, the basis of IoT, is in the spotlight which can be an alternative solution of a anti-theft system for motorcycle as they basically have practicality and security issues. Anti-theft system for motorcycle using the NFC smart devices based on RFID has been proposed. because Progress of Smart Device If someone get the Key for motorcycle theft, he can be easily stolen motorcycle. We thought about the concept of NFC security devices as a wireless key and automatic solenoid valve for setting the lock and unlock module. In this study, we designed motorcycle smart key system with general-purpose NFC system and the automatic solenoid valve for setting the lock and unlock module. First, we designed control unit and NFC card reader for motorcycle smart key system. Then we propose an AES encryption algorithm and prove that the motorcycle key system is controllable by showing the result of implementing and testing, after installing.

An Integrated Framework for Modeling the Influential Factors Affecting the Use of Voice-Enabled IoT Devices: A Case Study of Amazon Echo

  • Temidayo Oluwapelumi Shofolahan;Juyoung Kang
    • Asia pacific journal of information systems
    • /
    • v.28 no.4
    • /
    • pp.320-349
    • /
    • 2018
  • Purpose: The application of IoT is finding continuous acceptance in our daily lives, particularly, smart speakers are making life easier and convenient for consumers. This research aims to develop and test an integrated model of factors influencing consumer's adoption of voice-enabled IoT devices. Design/methodology/approach: Based on the VAM, an integrated voice-enabled IoT device adoption model is proposed. Gender differences on five constructs relating with perceived value (perceived usefulness, perceived enjoyment, perceived security risk, perceived technicality and perceived cost) was also examined through PLS-MGA technique. The usage experience of consumers was also controlled in the integrated VAM. Findings: Result shows that Perceived-Usefulness, Perceived-Enjoyment and Perceived-Cost have a strong effect on Perceived-Value. However, Perceived-Technicality and Perceived-Security-Risk are non-influential and have no significant effect on PV. Additionally, Perceived-Value and Social-Influence plays a significant role in predicting adoption intention. Gender differences also exist in consumers perception of usefulness, enjoyment and cost. In comparison to the basic value-based adoption model, the integrated model provides more insight on consumers adoption of voice-enabled IoT devices. Originality/value: Using an integrated model, this study is one of the first scholarly attempt at modelling the influential factors for adopting smart speakers i.e., voice-enabled IoT devices, with implications for improved adoption.

Analysis of Public Sector Sharing Rate based on the IoT Device Classification Methodology (사물인터넷(IoT) 기기 분류 체계 기반 공공분야 점유율 분석)

  • Lee, Hyung-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The Internet of Things (IoT) provides data convergence and sharing functions, and IoT technology is the most fundamental core technology in creating new services by convergence of various cutting-edge technologies. However, there are different classification systems for the Internet of Things, and when it is limited to the domestic public sector, it is difficult to properly grasp the current status of which devices are installed and operated with what share, and systematic data or research The results are very difficult to find. Therefore, in this study, the relevance of the classification system for IoT devices was analyzed according to reality based on sales, shipments, and growth rate, and based on this, the actual share of IoT devices among domestic public institutions was analyzed in detail. The derived detailed analysis results are expected to be efficiently utilized in the process of selecting IoT devices for research and analysis to advance information protection technology such as responding to malicious code attacks on IoT devices, analyzing incidents, and strengthening security vulnerabilities.

Utilization and Optimized Implementation of Format Preserving Encryption Algorithm for IoT and BLE Communications (IoT와 BLE 통신상의 형태보존암호 활용 및 최적화 구현 기법)

  • Lim, Ji-hwan;Kwon, Hyuk-dong;Woo, Jae-min;An, Kyu-hwang;Kim, Do-young;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1371-1378
    • /
    • 2018
  • Bluetooth is the key technology in the wireless connection of many Internet of Things (IoT) devices, especially focused on smartphones today. In addition, Bluetooth communication between the IoT device and the user is mainly performed via Bluetooth Low Energy (BLE), but as the Bluetooth technology gradually develops, the security vulnerability of the existing BLE is more prominent. Research on Bluetooth accessibility has been conducted steadily so far, but there is lack of research for data protection in Bluetooth communication. Therefore, in this paper, when sending and receiving data in BLE communication between IoT and users, we propose effective methods for communicating with each other through the Format Preserving Encryption Algorithm (FEA), not the plain text, and measures performance of FEA which is optimized in Arduino and PC.

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

Mutual Authentication Method for Hash Chain Based Sensors in IoT Environment (IoT 환경에서 해시 체인 기반 센서 상호 인증 기법)

  • Lee, Kwang-Hyoung;Lee, Jae-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.303-309
    • /
    • 2018
  • Internet of Things technology is an intelligent service that connects all objects to the Internet and interacts with them. It is a technology that can be used in various fields, such as device management, process management, monitoring of restricted areas for industrial systems, as well as for navigation in military theaters of operation. However, because all devices are connected to the Internet, various attacks using security vulnerabilities can cause a variety of damage, such as economic loss, personal information leaks, and risks to life from vulnerability attacks against medical services or for military purposes. Therefore, in this paper, a mutual authentication method and a key-generation and update system are applied by applying S/Key technology based on a hash chain in the communications process. A mutual authentication method is studied, which can cope with various security threats. The proposed protocol can be applied to inter-peer security communications, and we confirm it is robust against replay attacks and man-in-the-middle attacks, providing data integrity against well-known attacks in the IoT environment.

UDP-Based Active Scan for IoT Security (UAIS)

  • Jung, Hyun-Chul;Jo, Hyun-geun;Lee, Heejo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.20-34
    • /
    • 2021
  • Today, IoT devices are flooding, and traffic is increasing rapidly. The Internet of Things creates a variety of added value through connections between devices, while many devices are easily targeted by attackers due to security vulnerabilities. In the IoT environment, security diagnosis has problems such as having to provide different solutions for different types of devices in network situations where various types of devices are interlocked, personal leakage of security solutions themselves, and high cost, etc. To avoid such problems, a TCP-based active scan was presented. However, the TCP-based active scan has limitations that it is difficult to be applied to real-time systems due to long detection times. To complement this, this study uses UDP-based approaches. Specifically, a lightweight active scan algorithm that effectively identifies devices using UPnP protocols (SSDP, MDNS, and MBNS) that are most commonly used by manufacturers is proposed. The experimental results of this study have shown that devices can be distinguished by more than twice the true positive and recall at an average time of 1524 times faster than Nmap, which has a firm position in the field.

A study on prioritizing the application areas for business development of IoT(Internet of Things) (사물 인터넷의 사업화 영역에 대한 우선순위 선정에 관한 연구)

  • Moon, Tae Hee;Kim, Taehoon;Ahn, Hyunchul
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.183-195
    • /
    • 2014
  • This study aims at identifying and prioritizing the application areas for business development of IoT(Internet of Things). In specific, we collected the opinions of the experts on IoT in Korea through the survey based on pairwise comparison, and then we analyzed them using AHP(analytic hierarchy process). As a result, we found that 'Public Safety & Security', 'Automotive & Transportation', and 'Utility & Energy' are the most promising area in realizing IoT-related businesses. Also, we found that the experts had different views according to the positions of their industry in IoT value chain. The analysis showed that the device industry prioritizes 'Public Safety & Security', whereas the network industry does 'Automotive & Transportation'. The experts from the service industry were found to regard 'Utility and Energy' as the most promising commercialization area of IoT.

Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments (에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜)

  • Choi, Jeong-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.23-29
    • /
    • 2022
  • Recently, due to the increase in the use of Internet of Things (IoT) devices, the amount of data transmitted and processed to cloud computing servers has increased rapidly. As a result, network problems (delay, server overload and security threats) are emerging. In particular, edge computing with lower computational capabilities than cloud computing requires a lightweight authentication algorithm that can easily authenticate numerous IoT devices.In this paper, we proposed a key-agreement protocol of a lightweight algorithm that guarantees anonymity and forward and backward secrecy between IoT and edge devices. and the proposed algorithm is stable in MITM and replay attacks for edge device and IoT. As a result of comparing and analyzing the proposed key-agreement protocol with previous studies, it was shown that a lightweight protocol that can be efficiently used in IoT and edge devices.