• Title/Summary/Keyword: IoT Data Consistency

Search Result 5, Processing Time 0.019 seconds

A Study On IoT Data Consistency in IoT Environment (사물인터넷 환경에서 IoT 데이터 정합성 연구)

  • Choi, Changwon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.127-132
    • /
    • 2022
  • As the IoT technology is more developed, it is more important for the accuracy of IoT data. Since the IoT data supports a different formats and protocols, it is often happened that the IoT system is failed or the incorrect data is generated with the unreliable IoT devices(sensor, actuator). Because the abnormality of IoT device or the user situation is not detected correctly, this problem makes the user to be unsatisfied with the IoT system. This study proposes the decision methodology of IoT data consistency whether the IoT data is generated in normal range or not by using the mathematical functions('gradient descent function' and 'linear regression function'). It may be concluded that the gradient function method is suitable for the IoT data which the 'increasing velocity' is related with the next generated pattern(eg. sensor devices), the linear regression function method is suitable for the IoT data which the 'the difference from linear regression function' is related with the next generated pattern in case the data has a linear pattern(eg. water meter, electric meter).

A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning (머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구)

  • Lee, Seung Woon;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1071-1081
    • /
    • 2021
  • In addition to the current quality control procedures for the weather observation performed by the Korea Meteorological Administration (KMA), this study proposes quality inspection standards for Internet of Things (IoT) urban weather observed data based on machine learning that can be used in smart cities of the future. To this end, in order to confirm whether the standards currently set based on ASOS (Automated Synoptic Observing System) and AWS (Automatic Weather System) are suitable for urban weather, usability was verified based on SKT AWS data installed in Seoul, and a machine learning-based quality control algorithm was finally proposed in consideration of the IoT's own data's features. As for the quality control algorithm, missing value test, value pattern test, sufficient data test, statistical range abnormality test, time value abnormality test, spatial value abnormality test were performed first. After that, physical limit test, stage test, climate range test, and internal consistency test, which are QC for suggested by the KMA, were performed. To verify the proposed algorithm, it was applied to the actual IoT urban weather observed data to the weather station located in Songdo, Incheon. Through this, it is possible to identify defects that IoT devices can have that could not be identified by the existing KMA's QC and a quality control algorithm for IoT weather observation devices to be installed in smart cities of future is proposed.

Distributed Trust Management for Fog Based IoT Environment (포그 기반 IoT 환경의 분산 신뢰 관리 시스템)

  • Oh, Jungmin;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.731-751
    • /
    • 2021
  • The Internet of Things is a huge group of devices communicating each other and the interconnection of objects in the network is a basic requirement. Choosing a reliable device is critical because malicious devices can compromise networks and services. However, it is difficult to create a trust management model due to the mobility and resource constraints of IoT devices. For the centralized approach, there are issues of single point of failure and resource expansion and for the distributed approach, it allows to expand network without additional equipment by interconnecting each other, but it has limitations in data exchange and storage with limited resources and is difficult to ensure consistency. Recently, trust management models using fog nodes and blockchain have been proposed. However, blockchain has problems of low throughput and delay. Therefore, in this paper, a trust management model for selecting reliable devices in a fog-based IoT environment is proposed by applying IOTA, a blockchain technology for the Internet of Things. In this model, Directed Acyclic Graph-based ledger structure manages trust data without falsification and improves the low throughput and scalability problems of blockchain.

Bedtime Routine Management for Babies at 4-6 Months Based IoT Service (4-6개월 아기의 수면의식 관리를 위한 IoT기반 서비스)

  • Kim, Rokbeum;Park, Hyunjeong;Kim, Hyerin;Jeong, Solbee;Park, Su e;Park, Jung Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.205-207
    • /
    • 2017
  • This paper introduces the IoT-based service 'RapportRapport' using arduino and mobile application that focuses on consistency and repetition to manage bedtime routine - the core part of sleep education. It is necessary for baby's better sleep outcomes, including deep sleep and long sleep duration. 'RapportRapport' provides Arduino dolls with sensors attached to provoke sleep association to baby, and to help user's bedtime routine efficiently at the same time. Arduino and mobile application exchange data by communicating via bluetooth.

  • PDF

A Consistent Quality Bit Rate Control for the Line-Based Compression

  • Ham, Jung-Sik;Kim, Ho-Young;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.310-318
    • /
    • 2016
  • Emerging technologies such as the Internet of Things (IoT) and the Advanced Driver Assistant System (ADAS) often have image transmission functions with tough constraints, like low power and/or low delay, which require that they adopt line-based, low memory compression methods instead of existing frame-based image compression standards. Bit rate control in the conventional frame-based compression systems requires a lot of hardware resources when the scope of handled data falls at the frame level. On the other hand, attempts to reduce the heavy hardware resource requirement by focusing on line-level processing yield uneven image quality through the frame. In this paper, we propose a bit rate control that maintains consistency in image quality through the frame and improves the legibility of text regions. To find the line characteristics, the proposed bit rate control tests each line for ease of compression and the existence of text. Experiments on the proposed bit rate control show peak signal-to-noise ratios (PSNRs) similar to those of conventional bit rate controls, but with the use of significantly fewer hardware resources.