• Title/Summary/Keyword: IoT Big data

Search Result 404, Processing Time 0.025 seconds

Design of Untact Drive-Thru System for Big Data Application in COVID-19 Environments (COVID-19 환경에서 빅데이터 적용을 위한 비대면 Drive-Thru 시스템 설계)

  • Kim, Jun-Hyoung;Park, Hyeon-Seo;Lee, Chang-Min;Lee, Hyo-Sang;Oh, Am-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.555-557
    • /
    • 2021
  • 스마트폰이 널리 보급되면서 QR코드는 새로운 트렌드로 주목받고 있다. 많은 기업에서 QR코드를 활용하여 마케팅을 하고 있으며 QR코드는 사람들에게 친숙한 이미지가 되었다.. 이에 본 논문에서는 기존의 기업에서 서비스중인 인터폰을 통한 종업원과 소비자의 주문 구조방식의 Drive-Thru가 아닌 QR코드를 활용한 비대면 주문방식의 Drive-Thru 제공을 목적으로 한다. 이러한 서비스를 통하여 기존의 Drive-Thru를 이용 시 불편했던 의사소통, 정보부족을 소비자에게 효과적인 서비스로 제공할수 있고 기업에서는 기존의 Drive-Thru에 배치되어 있던 노동력을 효율적으로 사용하여 능률을 증가시킬 수 있는 기대효과를 가진다.

  • PDF

A Study on BIM based the Establishment of Integrated Maintenance System for Government Office Building in Jeju (BIM기반 제주 공공청사 통합 유지관리 시스템 구축 방안)

  • Kim, Hanjoon;Jang, Myung-Houn
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.57-58
    • /
    • 2020
  • Recently, government office buildings have become important in reducing maintenance costs. However, the loss of information raised a problem for maintenance work that could not meet the needs of users. Therefore, this study proposed a BIM-based integrated maintenance system for public offices in Jeju to efficiently maintenance work. The system can be integrated with IoT sensors, big data and artificial intelligence technologies to integrate information that occurs throughout the building's entire life cycle to exchange information. This system is also scalable to buildings, plants, region and urban infrastructure facilities as well as single buildings. It is expected that the system will provide reliable, high-quality, real-time information for efficient maintenance work, thereby supporting decision making and appropriate budget planning.

  • PDF

Kakao Talk, Internet fake news identification service using Bi-LSTM and topic modeling (Bi-LSTM과 토픽모델링을 활용한 카카오톡, 인터넷 가짜뉴스 판별 서비스)

  • Shim, Kuk-Bo;Lee, Seung-Ho;Jeong, Jun-Ho;Lee, Ki-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1082-1084
    • /
    • 2021
  • 현재 영어 기반의 기술 팩트체크 서비스는 다양하지만 한국 기반 팩트체크 서비스는 비기술적(언론인 등 전문가의 교차 검증을 통한 팩트체크)이 주를 이루고 있으며, 기술 팩트체크 서비스가 많이 시행되지 않고 있다. 본 논문에서는 기술적인 요소와 비기술적인 요소의 서비스를 함께 사용할 때 허위 정보를 가장 정확하게 식별할 수 있기 때문에 한국어 기반의 자연어 처리 기술을 이용한 팩트체킹 서비스를 제안한다.

AI-based Bridge Safety Monitoring System Model (AI 기반의 교량 안전 모니터링 시스템 모델)

  • Yeong-Hwi Ahn;Hyoung-Min Ham;Jong-Su Park;Dong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.107-108
    • /
    • 2023
  • 본 논문에서는 교량의 변위를 IoT 장치를 이용하여 실시간 측정하고 추출된 데이터를 이용하여 교량의 이상징후를 AI 기반으로 진단 및 모니터링 하는 방법을 제안한다. AI 모델 학습 학습을 위해서 비정상 상태의 교량이 필요하지만, 실제 교량에 인위적으로 비정상 상태를 만들 수 없으므로, 탄성 받침을 이용하여 모의 교량을 제작하였다. 탄성 받침을 이용하여 제작에 반영 및 모의교량에 적합한 모의 차량도 제작하여 정상적 데이터와 비정상적 데이터를 수집하였다. 수집된 데이터를 전처리 과정을 통해 AI 분석을 통해 교량의 이상 징후를 진단 및 모니터링하였으며, 제안 모델을 실험한 결과 96.7%의 정확도가 도출되었다.

  • PDF

A Review of FoodTech Applied to Foodservice (급식외식분야 푸드테크 동향 연구)

  • Jong Kyung Lee
    • Journal of the FoodService Safety
    • /
    • v.4 no.2
    • /
    • pp.42-47
    • /
    • 2023
  • The FoodTech industry has been developed with the rise of start-up by using AI, big data, robotics, biotechnology. In addition, sustainable development is more important with the trend of population growth, aging, and climate change. We investigated the impact of FoodTech on the foodservice industry with the cases of the global and domestic companies. The technology of AI, IoT, blockchain, robotics, automation systems are widely used to improve food safety and hygiene while as the use of diagnostic biomarkers such as blood or DNA, digital platform and app, and AI-based solutions are used in the field of personalized nutrition. With the expand of FoodTech in foodservice industry, the competencies that the managers need to develop include understanding technology, resource management, self-development, work ethics, problem-solving, and communication, therefore the support of the related education and training is required.

Application of Urban Computing to Explore Living Environment Characteristics in Seoul : Integration of S-Dot Sensor and Urban Data

  • Daehwan Kim;Woomin Nam;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.65-76
    • /
    • 2023
  • This paper identifies the aspects of living environment elements (PM2.5, PM10, Noise) throughout Seoul and the urban characteristics that affect them by utilizing the big data of the S-Dot sensors in Seoul, which has recently become a hot topic. In other words, it proposes a big data based urban computing research methodology and research direction to confirm the relationship between urban characteristics and living environments that directly affect citizens. The temporal range is from 2020 to 2021, which is the available range of time series data for S-Dot sensors, and the spatial range is throughout Seoul by 500mX500m GRID. First of all, as part of analyzing specific living environment patterns, simple trends through EDA are identified, and cluster analysis is conducted based on the trends. After that, in order to derive specific urban planning factors of each cluster, basic statistical analysis such as ANOVA, OLS and MNL analysis were conducted to confirm more specific characteristics. As a result of this study, cluster patterns of environment elements(PM2.5, PM10, Noise) and urban factors that affect them are identified, and there are areas with relatively high or low long-term living environment values compared to other regions. The results of this study are believed to be a reference for urban planning management measures for vulnerable areas of living environment, and it is expected to be an exploratory study that can provide directions to urban computing field, especially related to environmental data in the future.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Applying a smart livestock system as a development strategy for the animal life industry in the future: A review (미래 동물생명산업 발전전략으로써 스마트축산의 응용: 리뷰)

  • Park, Sang-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.241-262
    • /
    • 2021
  • This paper reviewed the necessity of a information and communication technology (ICT)-based smart livestock system as a development strategy for the animal life industry in the future. It also predicted the trends of livestock and animal food until 2050, 30 years later. Worldwide, livestock raising and consumption of animal food are rapidly changing in response to population growth, aging, reduction of agriculture population, urbanization, and income growth. Climate change can change the environment and livestock's productivity and reproductive efficiencies. Livestock production can lead to increased greenhouse gas emissions, land degradation, water pollution, animal welfare, and human health problems. To solve these issues, there is a need for a preemptive future response strategy to respond to climate change, improve productivity, animal welfare, and nutritional quality of animal foods, and prevent animal diseases using ICT-based smart livestock system fused with the 4th industrial revolution in various aspects of the animal life industry. The animal life industry of the future needs to integrate automation to improve sustainability and production efficiency. In the digital age, intelligent precision animal feeding with IoT (internet of things) and big data, ICT-based smart livestock system can collect, process, and analyze data from various sources in the animal life industry. It is composed of a digital system that can precisely remote control environmental parameters inside and outside the animal husbandry. The ICT-based smart livestock system can also be used for monitoring animal behavior and welfare, and feeding management of livestock using sensing technology for remote control through the Internet and mobile phones. It can be helpful in the collection, storage, retrieval, and dissemination of a wide range of information that farmers need. It can provide new information services to farmers.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.