• Title/Summary/Keyword: IoT Big data

Search Result 412, Processing Time 0.023 seconds

A Study on the IoT Platform based on Web using Embedded Device (임베디드 디바이스를 이용한 웹 기반 사물인터넷 플랫폼에 관한 연구)

  • Jeon, Jin Hwan;Song, Jeo;Lee, Sang Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.185-186
    • /
    • 2015
  • 생활 속 사물들을 유 무선 네트워크를 이용하여 상호 연결하고 정보를 공유하는 환경을 사물인터넷이라고 한다. 즉, 인터넷을 기반으로 모든 사물을 연결하여 사람과 사물, 사물과 사물 간의 정보를 상호 소통하는 지능형 기술 및 서비스로서 기존의 유선 통신 기반 인터넷 및 모바일 인터넷보다 진화된 다음 단계의 인터넷을 의미한다고 볼 수 있다. 이러한 사물인터넷은 가전제품을 비롯한 전자기기뿐만 아니라 원격검침, 헬스케어, 스마트홈, 스마트카, 스마트팩토리 등의 다양한 분야에서 가정 및 산업용으로 응용되고 있다. 본 논문에서는 임베디드 디바이스를 사용하여 가정의 전자기기를 사용환경을 구성하고 이러한 장치들과 소통하고 제어할 수 있는 웹 기반의 플랫폼 환경에 대하여 제안한다.

  • PDF

A Study on the Architecture Design of Smart Farm System based on IoT Technology (IoT 기반의 스마트 팜 시스템 구조설계에 관한 연구)

  • Ghil, Min-Sik;Kwak, Dong-Kurl;Choi, Shin-Hyeong;Shin, Jong-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.543-545
    • /
    • 2019
  • Recently, the demand for smart farms is increasing due to the increase in the cultivation area such as horticulture, fruit trees and special crops. However, due to the irregular weather changes and the cultivation method of the crops due to the different cultivation environment, there are frequent occurrence of diseases and insect pests and infectious diseases due to system error or carelessness, and the cycle is also very short. In addition, the Smart Farm business has been built by combining various sensors (temperature, humidity, CO2, illumination) and LED lighting, but it is costly in terms of frequent errors, lack of power supply, And thus the management can not be efficiently managed. Therefore, this paper combines real time sensing technology based on IoT Platform and high performance control technology to control pests and equipment errors and monitor the growth status of crops in real time based on big data analysis and Artificial Intelligence System.

  • PDF

Big data-based Local Store Information Providing Service (빅데이터에 기반한 지역 상점 관련 정보제공 서비스)

  • Mun, Chang-Bae;Park, Hyun-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.561-571
    • /
    • 2020
  • Location information service using big data is continuously developing. In terms of navigation, the range of services from map API service to ship navigation information has been expanded, and system application information has been extended to SNS and blog search records for each location. Recently, it is being used as a new industry such as location-based search and advertisement, driverless cars, Internet of Things (IoT) and online to offline (O2O) services. In this study, we propose an information system that enables users to receive information about nearby stores more effectively by using big data when a user moves a specific route. In addition, we have designed this system so that local stores can use this system to effectively promote it at low cost. In particular, we analyzed web-based information in real time to improve the accuracy of information provided to users by complementing the data. Through this system, system users will be able to utilize the information more effectively. Also, from a system perspective, it can be used to create new services by integrating with various web services.

Analysis Model Evaluation based on IoT Data and Machine Learning Algorithm for Prediction of Acer Mono Sap Liquid Water

  • Lee, Han Sung;Jung, Se Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1286-1295
    • /
    • 2020
  • It has been increasingly difficult to predict the amounts of Acer mono sap to be collected due to droughts and cold waves caused by recent climate changes with few studies conducted on the prediction of its collection volume. This study thus set out to propose a Big Data prediction system based on meteorological information for the collection of Acer mono sap. The proposed system would analyze collected data and provide managers with a statistical chart of prediction values regarding climate factors to affect the amounts of Acer mono sap to be collected, thus enabling efficient work. It was designed based on Hadoop for data collection, treatment and analysis. The study also analyzed and proposed an optimal prediction model for climate conditions to influence the volume of Acer mono sap to be collected by applying a multiple regression analysis model based on Hadoop and Mahout.

IoT based real time agriculture farming

  • Mateen, Ahmed;Zhu, Qingsheng;Afsar, Salman
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • The Internet of things (IOT) is remodeling the agribusiness empowering the agriculturists through the extensive range of strategies, for example, accuracy as well as practical farming to deal with challenges in the field. The paper aims making use of evolving technology i.e. IoT and smart agriculture using automation. The objective of this research paper to present tools and best practices for understanding the role of information and communication technologies in agriculture sector, motivate and make the illiterate farmers to understand the best insights given by the big data analytics using machine learning. The methodology used in this system can monitor the humidity, moisture level and can even detect motions. According to the data received from all the sensors the water pump, cutter and sprayer get automatically activated or deactivated. we investigate a remote monitoring system using Wi-Fi. These nodes send data wirelessly to a central server, which collects the data, stores it and will allow it to be analyzed then displayed as needed and can also be sent to the client mobile.

Design of Splunk Platform based Big Data Analysis System for Objectionable Information Detection (Splunk 플랫폼을 활용한 유해 정보 탐지를 위한 빅데이터 분석 시스템 설계)

  • Lee, Hyeop-Geon;Kim, Young-Woon;Kim, Ki-Young;Choi, Jong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • The Internet of Things (IoT), which is emerging as a future economic growth engine, has been actively introduced in areas close to our daily lives. However, there are still IoT security threats that need to be resolved. In particular, with the spread of smart homes and smart cities, an explosive amount of closed-circuit televisions (CCTVs) have been installed. The Internet protocol (IP) information and even port numbers assigned to CCTVs are open to the public via search engines of web portals or on social media platforms, such as Facebook and Twitter; even with simple tools these pieces of information can be easily hacked. For this reason, a big-data analytics system is needed, capable of supporting quick responses against data, that can potentially contain risk factors to security or illegal websites that may cause social problems, by assisting in analyzing data collected by search engines and social media platforms, frequently utilized by Internet users, as well as data on illegal websites.

Efficient K-Anonymization Implementation with Apache Spark

  • Kim, Tae-Su;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.17-24
    • /
    • 2018
  • Today, we are living in the era of data and information. With the advent of Internet of Things (IoT), the popularity of social networking sites, and the development of mobile devices, a large amount of data is being produced in diverse areas. The collection of such data generated in various area is called big data. As the importance of big data grows, there has been a growing need to share big data containing information regarding an individual entity. As big data contains sensitive information about individuals, directly releasing it for public use may violate existing privacy requirements. Thus, privacy-preserving data publishing (PPDP) has been actively studied to share big data containing personal information for public use, while preserving the privacy of the individual. K-anonymity, which is the most popular method in the area of PPDP, transforms each record in a table such that at least k records have the same values for the given quasi-identifier attributes, and thus each record is indistinguishable from other records in the same class. As the size of big data continuously getting larger, there is a growing demand for the method which can efficiently anonymize vast amount of dta. Thus, in this paper, we develop an efficient k-anonymity method by using Spark distributed framework. Experimental results show that, through the developed method, significant gains in processing time can be achieved.

A Study on Building a Test Bed for Smart Manufacturing Technology (스마트 제조기술을 위한 테스트베드 구축에 관한 연구)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.475-479
    • /
    • 2021
  • There are many difficulties in the applications of smart manufacturing technology in the era of the 4th industrial revolution. In this paper, a test bed was built to aim for acquiring smart manufacturing technology, and the test bed was designed to acquire basic technologies necessary for PLC (Programmable Logic Controller), HMI, Internet of Things (IoT), artificial intelligence (AI) and big data. By building a vehicle maintenance lift that can be easily accessed by the general public, PLC control technology and HMI drawing technology can be acquired, and by using cloud services, workers can respond to emergencies and alarms regardless of time and space. In addition, by managing and monitoring data for smart manufacturing, it is possible to acquire basic technologies necessary for embedded systems, the Internet of Things, artificial intelligence, and big data. It is expected that the improvement of smart manufacturing technology capability according to the results of this study will contribute to the effect of creating added value according to the applications of smart manufacturing technology in the future.

A Study on the Production and Consumption Authentication Power Trading System based on Big Data Analysis using Blockchain Network (블록체인 네트워크를 이용한 빅데이터 분석 기반 생산·소비량 인증 전력 거래 시스템에 관한 연구)

  • Kim, Young-Gon;Heo, Keol;Choi, Jung-In
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.76-81
    • /
    • 2019
  • This paper is a review of the certification system required for various energy prosumer business models, including P2P energy trading and participation in small demand response programs, which are based on reliable production and consumption certification. One of the most important parameter in energy trading is ensuring the reliability of trading account balancing. Therefore, we studied to use big data pattern analysis based blockchain smart contract between trading partners to make its tradings are more reliable. For this purpose big data analysis system collected from the IoT AMI and a production authentication system using a private blockchain network linked with the AMI is discussed, using the blockchain smart contract are also suggested. Futhermore, energy trading system concept and business models are introduced.

Implementation of Hair Style Recommendation System Based on Big data and Deepfakes (빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현)

  • Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.13-19
    • /
    • 2023
  • In this paper, we investigated the implementation of a hairstyle recommendation system based on big data and deepfake technology. The proposed hairstyle recommendation system recognizes the facial shapes based on the user's photo (image). Facial shapes are classified into oval, round, and square shapes, and hairstyles that suit each facial shape are synthesized using deepfake technology and provided as videos. Hairstyles are recommended based on big data by applying the latest trends and styles that suit the facial shape. With the image segmentation map and the Motion Supervised Co-Part Segmentation algorithm, it is possible to synthesize elements between images belonging to the same category (such as hair, face, etc.). Next, the synthesized image with the hairstyle and a pre-defined video are applied to the Motion Representations for Articulated Animation algorithm to generate a video animation. The proposed system is expected to be used in various aspects of the beauty industry, including virtual fitting and other related areas. In future research, we plan to study the development of a smart mirror that recommends hairstyles and incorporates features such as Internet of Things (IoT) functionality.