• Title/Summary/Keyword: IoT 모니터링

Search Result 390, Processing Time 0.026 seconds

IoT-based disaster safety monitoring system (IoT 기반 재난 안전 모니터링 시스템)

  • Seo, Hyungyoon;Kim, Tae-eon;Kim, Hyeun-du
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.265-266
    • /
    • 2020
  • 본 논문에서는 IoT 기술을 이용한 재난 안전 모니터링 시스템을 제안한다. 기술의 발전으로 개인 통신 기기에도 IoT가 범용적으로 사용되고 있으나 재난 안전 모니터링 시스템과의 접목은 쉽지 않다. 본 논문에서는 IoT 기술 기반 재난 안전 모니터링 시스템을 개인 통신 기기에 접목 시키기 위해 카카오톡 플랫폼을 이용한다. 재난 안전 모니터링 시스템은 평시에 IoT 센서로 온도, 강우량, 진동 및 미세먼지를 모니터링하여 정보를 제공한다. 만약 화재, 폭우, 지진 등의 자연 재난 등이 발생하면 메신저 플랫폼인 카카오톡을 통하여 재난정보를 재난 초기에 제공함으로써 피해를 최소화 하는 것을 목표로 한다.

  • PDF

A Study on the Development for Environment Monitoring System of Micro Data Center (마이크로 데이터센터의 환경 모니터링 시스템 개발 연구)

  • Lee, Kap Rai;Kim, Young Sik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.355-360
    • /
    • 2022
  • In this paper, we present design and developing method for EMS(environment monitoring system) of micro data center. This developing EMS monitors operating environment of micro data center and analyze sensing data through IoT(Internet of things) sensors in real time. Firstly we present configuration method of IoT sensing package and design method EMS hardware platform. Secondly we design data collector software for data collection of IoT sensor with different protocol and develop monitoring software of EMS. The data collector software consists of sensor collector module and collector manager module. Also we design EMS software which has micro service architecture structural style and component based business logic.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

SDN-Based Collection-path Steering for IoT-Cloud Service Monitoring Data over SmartX-mini Playground (SmartX-mini Playground 상의 IoT-Cloud 서비스에 대한 SDN 기반 모니터링 데이터 수집 경로 설정)

  • Yoon, Heebum;Kim, Seungryong;Kim, JongWon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1598-1607
    • /
    • 2016
  • Safe transmitting monitoring data is essential for supporting IoT-Cloud services efficiently. In this paper, we find ways to configure data path flexibly in SDN based for IoT-Cloud services utilizing SmartX-mini Playground. To do this, we use ONOS(Open Network Operating System) SDN Controller, ONOS NBI Applications made from us to check flexible and safe data path configuration for IoT-Cloud monitoring data transmitting in real IoT-SDN-Cloud environments.

Real-Time Monitoring and Control System of Server Room based on IoT (IoT를 기반으로 하는 서버 룸 실시간 모니터링 및 제어 시스템)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.7-13
    • /
    • 2020
  • In this paper, we propose a system that monitors and controls the environment of a server room in real-time based on IoT. Recently, as the information society has been maximized, the damage has been significant when the computer system is down. In particular, damage such as a fire in the server room leads to loss of data and data recovery becomes impossible. In order to reduce such damage, a node capable of real-time monitoring using an IoT system was proposed. In addition, we proposed a coordinator node that can collect and monitor node information. In order to verify that the proposed system works, we have developed software that can control node monitoring and air conditioning. As a result of the experiment, we confirmed that the proposed system detects fire and controls the air conditioner.

A Study on IoT Monitering Technology of Power Converter for E-Mobility (E-Mobility용 전력변환기의 IoT 모니터링 기술에 대한 연구)

  • Lee, In-Seok;Lee, Ju;Kang, Ja-Yoon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.39-44
    • /
    • 2018
  • In this paper, we propose a monitoring method of smartphone to integrate IoT technology to monitor the state of the vehicle for fault diagnosis of E-Mobility power converter. In China, EV regulations are being implemented to promote technological development and market changes in electric vehicles. To meet this trend, E-Mobility should study suitable monitoring technology. The OBD-II method used in existing automobiles is a wired / wireless communication method. In order to apply it to E-Mobility, additional interface and communication link are required. In this paper, we propose a technology to monitor the status information of power converter for E-Mobility by combining existing technology with IoT. This technology simplifies the existing network protocol and hardware interface, and confirms that the E-Mobility power converter and smartphone can be interworked for easy user monitoring. And we have done research to make high value product design from the aspect of function.

Data Monitoring using Raspberry Pi in IoT Environment (IoT 환경에서 라즈베리파이를 이용한 데이터 모니터링)

  • Lee, Dong-Hyung;Lee, Kang-Min;Yun, Hyeon-Seong;Jung, Jae-Hoon;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.400-403
    • /
    • 2021
  • As IoT technology becomes popular, more and more data is being generated, and the diversity of data is also increasing. In particular, in smart factory or Home IoT systems, data processing is very important because various data is collected and processed in real time through sensors. In this paper, we present a method for collecting, analyzing, and monitoring various data generated by sensors in IoT environment through Raspberry Pi. We also validate its usefulness by demonstrating that the above processed data can be operated in conjunction with smart mirror and mobile application.

  • PDF

Continuous Integration for Efficient IoT-Cloud Service Realization by Employing Application Performance Monitoring (효율적인 IoT-Cloud 서비스 실증을 위한 응용 성능 모니터링을 활용한 지속적인 통합)

  • Bae, Jeongju;Kim, Chorwon;Kim, JongWon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • IoT-Cloud service, integration of Internet of Things (IoT) and Cloud, is becoming a critical model for realizing creative and futuristic application services. Since IoT machines have little computing capacity, it is effective to attaching public Cloud resources for realizing IoT-Cloud service. Furthermore, utilizing containers and adopting a microservice architecture for developing IoT-Cloud service are useful for effective realization. The quality of microservice based IoT-Cloud service is affected by service function chaining which inter-connects each functions. For example, an issue with some of the functions or a bottleneck of inter-connection can degrade the service quality. To ensure functionality of the entire service, various test procedures considering various service environments are required to improve the service continuously. Hence in this paper, we introduce experimental realization of continuous integration based on DevOps and employ application performance monitoring for Node.js based IoT-Cloud service. Then we discuss its effectiveness.

Improvement of SWoT-Based Real Time Monitoring System (SWoT 기반 실시간 모니터링 시스템 개선)

  • Yu, Myung-han;Kim, Sangkyung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.227-234
    • /
    • 2015
  • USN-based real-time monitoring systems, which receive raw data from sensor nodes and store the processed information in traditional servers, recently get to be replaced by IoT(Internet of Things)/WoT(Web of Things)-based ones. Especially, Social Web of Things(SWoT) paradigm can make use of cloud storage over Social Network Service(SNS) and enable the possibility of integrated access, management and sharing. This paper proposes an improved SWoT-based real-time monitoring system which makes up for weak points of existing systems, and implements monitoring service integrating a legacy sensor network and commercial SNS without requiring additional servers. Especially, the proposed system can reduce emergency propagation time by employing PUSH messages.

Trends of Ecological Changing Monitoring and IoT Convergence Technology (생태계 변화 모니터링과 IoT 융합기술 동향)

  • Kim, N.S.;Pyo, C.S.;Oh, C.H.;Kim, E.S.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.4
    • /
    • pp.64-78
    • /
    • 2013
  • 21세기의 화두인 환경오염 및 기후변화에 따른 생태계 변화는 미래사회의 최대 위협으로써, 국제적뿐만 아니라 우리나라가 지속 가능한 사회로 발전하기 위해서는 생태계 변화에 대한 실시간 모니터링 및 이를 기반으로 한 예측 및 예보 시스템을 확보해야 하는데, 이를 위해 체계적이고 장기적인 대응 및 대책이 필요한 시점이다. 본고에서는 생태계 변화 모니터링을 위한 국내외 연구개발 동향과 차세대 실시간 생태계 관측 네트워크의 하나의 대안이 될 수 있는 IoT(Internet of Things)의 센서네트워크 기반 생태계 변화 모니터링 국내외 융합 기술 동향들을 살펴보고자 한다. 아울러, 향후 실시간 생태계 변화 모니터링을 위한 기술적 이슈 및 전망 등을 간략히 제시하고자 한다.

  • PDF