• Title/Summary/Keyword: IoT 결함

Search Result 645, Processing Time 0.024 seconds

A Study on the Development of Government Emergency Preparedness Policy Priority Elicitation (정부 비상대비정책 우선순위 도출에 관한 연구)

  • Choi, Won Sang;Shin, Jin
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2020
  • The purpose of this study is to present the application of Information and Communication Technology(ICT) during the 4th Industrial Revolution for the efficient implementation of government emergency preparedness policies. Brainstorming by experts categorized the government's emergency preparedness policies into 4 types and 12 detailed tasks. Classification results were used by AHP(Analytic Hierarchy Process) to analyze relative importance and priorities. The AHP survey found that strengthening crisis management responsiveness was the most important detailed task. Artificial Intelligence(AI), Internet of Things(IoT), Unmanned Autonomy System, Virtual Reality(VR), and Augmented Reality(AR) were presented as major information and communication technology(ICT) for the efficient execution of detailed tasks.

A Study of Implementing Efficient Rotation for ARX Lightweight Block Cipher on Low-level Microcontrollers (저사양 마이크로 컨트롤러에서 ARX 경량 암호를 위한 효율적인 Rotation 구현 방법 연구)

  • Kim, Minwoo;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.623-630
    • /
    • 2016
  • Heterogeneous IoT devices must satisfy a certain level of security for mutual connections and communications. However, a performance degradation of cryptographic algorithms in resource constrained devices is inevitable and so an optimization or efficient implementation method is necessary. In this paper, we study an efficient implementation method for rotation operations regarding registers for running ARX lightweight block ciphers. In a practical sense, we investigate the performance of modified rotation operations through experiments using real experiment devices. We show the improved performance of modified rotation operations and discover the significant difference in measured performance between simulations and real experiments, particularly for 16-bit MSP microcontrollers.

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

IoT Utilization for Predicting the Risk of Circulatory System Diseases and Medical Expenses Due to Short-term Carbon Monoxide Exposure (일산화탄소 단기 노출에 따른 순환계통 질환 위험과 진료비용 예측을 위한 IoT 활용 방안)

  • Lee, Sangho;Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.7-14
    • /
    • 2020
  • This study analyzed the effect of the number of deaths of circulatory system diseases according to 12-day short-term exposure of carbon monoxide from January 2010 to December 2018, and predicted the future treatment cost of circulatory system diseases according to increased carbon monoxide concentration. Data were extracted from Air Korea of Korea Environment Corporation and Korea Statistical Office, and analyzed using Poisson regression analysis and ARIMA intervention model. For statistical processing, SPSS Ver. 21.0 program was used. The results of the study are as follows. First, as a result of analyzing the relationship between the impact of short-term carbon monoxide exposure on death of circulatory system diseases from the day to the previous 11 days, it was found that the previous 11 days had the highest impact. Second, with the increase in carbon monoxide concentration, the future circulatory system disease treatment cost was estimated at 10,123 billion won in 2019, higher than the observed value of 9,443 billion won at the end of December 2018. In addition, when summarized by month, it can be seen that the cost of treatment for circulatory diseases increases from January to December, reflecting seasonal fluctuations. Through such research, the future for a healthy life for all citizens can be realized by distributing various devices and equipment utilizing IoT to preemptively respond to the increase in air pollutants such as carbon monoxide.

Development of LoRa IoT Automatic Meter Reading and Meter Data Management System for Smart Water Grid (스마트워터그리드를 위한 LoRa IoT 원격검침 및 계량데이터 시스템 개발)

  • Park, Jeong-won;Park, Jae-sam
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • In this paper, water meter AMR(automatic meter reading), one of the core technologies of smart water grid, using LoRa IoT network is studied. The main content of the research is to develop the network system and show the test results that one PC server receives the readings of water meters from multiple households through LoRa communication and stores them in the database, and at the same time sends the data to the web server database through internet. The system also allows users to monitor the meter readings using their smartphones. The hardware and firmware of the main board of the digital water meter are developed. For a PC server program, MDMS(meter data management system) is developed using Visual C#. The app program running on the user's smartphone is also developed using Android Studio. By connecting each developed parts, the total network system is mounted on a flow test bench in the laboratory and tested. For the fields test, 5 places around the university are selected and the transmission distances are tested. The test result show that the developed system can be applied into the real field. The developed system can be expanded to various social safety nets such as monitoring the living alone or elderly with dementia.

IoT Based Office Environment Improvement Plan - Focusing on Office Relocation Applying Block Stacking Principle - (사물인터넷 기반 사무환경개선방안 -블록 스태킹 원리를 적용한 사무실 재배치를 중심으로-)

  • Park, Kwang-Chul;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • In this study, the IOT-based desk layout method was proposed to complement the existing seating method and to improve the work efficiency. The IoT system for the desk layout needs determining the function, type and network protocol of the sensor to find out the working status of the desk to reasonably assist the worker's seat placement. A collection method was proposed. The algorithm used in Block Stacking was used when deciding how to allocate seats using the acquired data. As a result, we could suggest an arithmetic basis for rational desk layout in IoT environment and show that it can be applied to an advanced flexible seating system based on working type in addition to the preferences of employees in the future.

A Study on Multi-function Implementation using Single Sensor (단일 센서를 사용한 다기능 구현에 관한 연구)

  • Choi, Su-Yeol;Lee, Chang-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.133-137
    • /
    • 2016
  • The video and audio information occupies a large portion of the IoT information. Various sensors can be used in a more accurate situation awareness and the absence of the main information has been required. Increasing in resource management in accordance with the use of various sensors. As a method to reduce the resources required in the communication of the various sensors and find the possibility to process the sensor information that can take the place of the other sensor. In this paper, using the LIS302 DL MEMS motion sensor to measure the data in the ping-pong ball, shuttlecock, tennis ball falling into table tennis. Data measured in the three object was confirmed that in proportion to the amount of impact. This experiment using the accelerometer can be confirmed that changes in the amount of impact. The results using a single multi-function sensor showed a possible implementation. In addition, the recognized in consideration of the situation in the early development stage of the multi-function sensor.

Exploration of User Experience Research Method with Big Data Analysis : Focusing on the Online Review Analysis of Echo (빅데이터 분석을 활용한 사용자 경험 평가 방법론 탐색 : 아마존 에코에 대한 온라인 리뷰 분석을 중심으로)

  • Hwang, Hae Jeong;Shim, Hye Rin;Choi, Junho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.517-528
    • /
    • 2016
  • This study attempted to explore and examine a new user experience (UX) research method for IoT products which are becoming widely used but lack practical user research. While user experience research has been traditionally opted for survey or observation methods, this paper utilized big data analysis method for user online reviews on an intelligent agent IoT product, Amazon's Echo. The results of topic modelling analysis extracted user experience elements such as features, conversational interaction, and updates. In addition, regression analysis showed that the topic of updates was the most influential determinant of user satisfaction. The main implication of this study is the new introduction of big data analysis method into the user experience research for the intelligent agent IoT products.

Memory-Efficient Implementation of Ultra-Lightweight Block Cipher Algorithm CHAM on Low-End 8-Bit AVR Processors (저사양 8-bit AVR 프로세서 상에서의 초경량 블록 암호 알고리즘 CHAM 메모리 최적화 구현)

  • Seo, Hwajeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.545-550
    • /
    • 2018
  • Ultra-lightweight block cipher CHAM, consisting of simple addition, rotation, and eXclusive-or operations, enables the efficient implementations over both low-end and high-end Internet of Things (IoT) platforms. In particular, the CHAM block cipher targets the enhanced computational performance for the low-end IoT platforms. In this paper, we introduce the efficient implementation techniques to minimize the memory consumption and optimize the execution timing over 8-bit AVR IoT platforms. To achieve the higher performance, we exploit the partly iterated expression and arrange the memory alignment. Furthermore, we exploit the optimal number of register and data update. Finally, we achieve the high RANK parameters including 29.9, 18.0, and 13.4 for CHAM 64/128, 128/128, and 128/256, respectively. These are the best implementation results in existing block ciphers.