• Title/Summary/Keyword: IoT (internet of things)

Search Result 1,917, Processing Time 0.033 seconds

A Study on Internet of Things in IT Convergence Period (융복합 시대의 사물인터넷에 관한 연구)

  • Lee, Seong-Hoon;Lee, Dong-Woo
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.267-272
    • /
    • 2014
  • Many people have used a internet at various purposes. Internet have been used the optimal space to share informations by information producer or consumer. But, recently, through the development of networks and devices, The Internet is expanding beyond PCs and mobile devices into enterprise assets such as field equipment, and consumer items such as cars and televisions. The Internet of Things will enable forms of collaboration and communication between people and things, and between things themselves, hitherto unknown and unimagined. This paper presents various meanings of IoT, and describe the electronic and car domain of internet of things.

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

Design of Mutual Authentication and Grouping Protocol Based On Network Control Server Applicable to General Purpose (범용적으로 적용 가능한 네트워크제어서버 기반의 상호인증 및 그룹핑 프로토콜 설계)

  • Park, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.13-23
    • /
    • 2017
  • In order to protect personal information and important information (confidential information, sales information, user information, etc.) in the internal network, companies and organizations apply encryption to the Server-To-Server or Server-To-Client communication section, And are experiencing difficulties due to the increasing number of known attacks and intelligent security attacks. In order to apply the existing S / W encryption technology, it is necessary to modify the application. In the financial sector, "Comprehensive Measures to Prevent the Recurrence of Personal Information Leakage in the Domestic Financial Sector" has been issued, and standard guidelines for financial computing security have been laid out, and it is required to expand the whole area of encryption to the internal network. In addition, even in environments such as U-Health and Smart Grid, which are based on the Internet of Things (IoT) environment, which is increasingly used, security requirements for each collection gateway and secure transmission of the transmitted and received data The requirements of the secure channel for the use of the standard are specified in the standard. Therefore, in this paper, we propose a secure encryption algorithm through mutual authentication and grouping for each node through H / W based Network Control Server (NCS) applicable to internal system and IoT environment provided by enterprises and organizations. We propose a protocol design that can set the channel.

Privacy-Preservation Using Group Signature for Incentive Mechanisms in Mobile Crowd Sensing

  • Kim, Mihui;Park, Younghee;Dighe, Pankaj Balasaheb
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1036-1054
    • /
    • 2019
  • Recently, concomitant with a surge in numbers of Internet of Things (IoT) devices with various sensors, mobile crowdsensing (MCS) has provided a new business model for IoT. For example, a person can share road traffic pictures taken with their smartphone via a cloud computing system and the MCS data can provide benefits to other consumers. In this service model, to encourage people to actively engage in sensing activities and to voluntarily share their sensing data, providing appropriate incentives is very important. However, the sensing data from personal devices can be sensitive to privacy, and thus the privacy issue can suppress data sharing. Therefore, the development of an appropriate privacy protection system is essential for successful MCS. In this study, we address this problem due to the conflicting objectives of privacy preservation and incentive payment. We propose a privacy-preserving mechanism that protects identity and location privacy of sensing users through an on-demand incentive payment and group signatures methods. Subsequently, we apply the proposed mechanism to one example of MCS-an intelligent parking system-and demonstrate the feasibility and efficiency of our mechanism through emulation.

Smoothing Algorithm Considering Peak Rate Utilization in IoT Environment (IoT 환경에서 첨두 전송률 이용률을 고려한 스무딩 알고리즘)

  • MyounJae Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.21-26
    • /
    • 2024
  • The transmission of video data stored on a video server to a large number of clients with finite buffer sizes requires a transmission plan that considers factors such as the number of rate changes, peak rate, and the amount of rate variability. Such transmission plans are referred to as smoothing algorithms, examples of which include CBA, MCBA, and MVBA. This study proposes an algorithm to reduce the utilization of the peak rate and evaluates the performance of the proposed algorithm. The evaluation factors include the number of rate changes, peak rate, rate variability, buffer utilization, average rate, and peak rate utilization. The evaluation results show that the proposed algorithm exhibits lower buffer utilization, average rate, and peak rate utilization compared to the MVBA algorithm.

An IoT-Aware System for Managing Patients' Waiting Time Using Bluetooth Low-Energy Technology

  • Reham Alabduljabbar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.83-92
    • /
    • 2024
  • It is a common observation that whenever any patient arrives at the front desk of a hospital, outpatient clinic, or other health-associated centers, they have to first queue up in a line and wait to fill in their registration form to get admitted. The long waiting time without any status updates is the most common complaint, worrying health officials. In this paper, UrNext, a location-aware mobile-based solution using Bluetooth low-energy (BLE) technology, is presented to solve the problem. Recently, a technology-oriented method has been gaining popularity in solving the healthcare sector's problems, namely the Internet of Things (IoT). The implementation of this solution could be explained through a simple example that when a patient arrives at a clinic for her consultation. There, instead of having to wait in long lines, she will be greeted automatically, receive a push notification telling her that she has been admitted along with an estimated waiting time for her consultation session. This will not only provide the patients with a sense of freedom but would also reduce uncertainty levels that are generally observed, thus saving both time and money. This work aimed to improve clinics' quality of services and organize queues and minimize waiting times in clinics, leading to patient comfortability and reducing the burden on nurses and receptionists. The results demonstrated that the presented system was successful in its performance and helped achieve high usability.

An Effective Data Distribution Scheme in Sensor Network for Internet of Things (사물인터넷을 위한 센서 네트워크에서 효율적인 데이터 분산 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.769-774
    • /
    • 2015
  • Sensor network as an infrastructure of IoT(Internet of Things) has reliability issue because sensor nodes have limited memory as well as bounded battery. To improve the reliability of network, this paper proposes a data distribution scheme. The proposed algorithm distributes the data which each sensor node periodically produces into neighbor nodes that have enough memory as well as battery. This distribution process goes on more than 1 hop for overcoming unexpected spatial crash. Through simulation, we have confirmed that the proposed scheme can improve the resilience of IoT without affecting the life time of sensor network.

Arduino Multi-Authentication System using NFC and OTP (NFC와 OPT를 활용한 아두이노 다중 인증 시스템)

  • Lee, BeomJin;Kim, JuSeong;Yang, GiYeol;Yang, WooBeom;Choi, Changwon
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.3
    • /
    • pp.25-30
    • /
    • 2016
  • The issued problem in the existed NFC authentication system is the security problem caused by the fixed key and the inconvenience occurred by the extra NFC tag. This paper aims to enhance the security level through OTP system added up the key generation mechanism and the convenience level by the integrated Android App. This proposed authentication system on Arduino will be widely applied to IoT security and will be used on diverse applications.

IoT-based low-cost prototype for online monitoring of maximum output power of domestic photovoltaic systems

  • Rouibah, Nassir;Barazane, Linda;Benghanem, Mohamed;Mellit, Adel
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.459-470
    • /
    • 2021
  • This paper presents a low-cost prototype for monitoring online the maximum power produced by a domestic photovoltaic (PV) system using Internet of Things (IoT) technology. The most common tracking algorithms (P&O, InCond, HC, VSS InCond, and FL) were first simulated using MATLAB/Simulink and then implemented in a low-cost microcontroller (Arduino). The current, voltage, load current, load voltage, power at the maximum power point, duty cycle, module temperature, and in-plane solar irradiance are monitored. Using IoT technology, users can check in real time the change in power produced by their installation anywhere and anytime without additional effort or cost. The designed prototype is suitable for domestic PV applications, particularly at remote sites. It can also help users check online whether any abnormality has happened in their system based simply on the variation in the produced maximum power. Experimental results show that the system performs well. Moreover, the prototype is easy to implement, low in cost, saves time, and minimizes human effort. The developed monitoring system could be extended by integrating fault detection and diagnosis algorithms.

Risk Analysis for Protecting Personal Information in IoT Environments (사물인터넷(IoT) 환경에서의 개인정보 위험 분석 프레임워크)

  • Lee, Ae Ri;Kim, Beomsoo;Jang, Jaeyoung
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.41-62
    • /
    • 2016
  • In Internet of Things (IoT) era, more diverse types of information are collected and the environment of information usage, distribution, and processing is changing. Recently, there have been a growing number of cases involving breach and infringement of personal information in IoT services, for examples, including data breach incidents of Web cam service or drone and hacking cases of smart connected car or individual monitoring service. With the evolution of IoT, concerns on personal information protection has become a crucial issue and thus the risk analysis and management method of personal information should be systematically prepared. This study shows risk factors in IoT regarding possible breach of personal information and infringement of privacy. We propose "a risk analysis framework of protecting personal information in IoT environments" consisting of asset (personal information-type and sensitivity) subject to risk, threats of infringement (device, network, and server points), and social impact caused from the privacy incident. To verify this proposed framework, we conducted risk analysis of IoT services (smart communication device, connected car, smart healthcare, smart home, and smart infra) using this framework. Based on the analysis results, we identified the level of risk to personal information in IoT services and suggested measures to protect personal information and appropriately use it.