Acknowledgement
We would like to thank the deanship of scientific research at Islamic University of Madinah, Saudi Arabia for the financial support of this work through the program Tamayouz 2 of the academic year 2020/2021, research project No. 489.
References
- G. Masson and I. Kaizuka, Trends 2018 in photovoltaic applications, Report IEA PVPS T1-34:2018, Paris, French, 2018, available from http://www.iea-pvps.org/fileadmin/dam/intranet/task1/
- D. Qerimi et al., Modeling of the solar thermal energy use in urban areas, Civ. Eng. J. 6 (2020), no. 7, 1349-1367, https://doi.org/10.28991/cej-2020-03091553
- A. H. Sodhro, Towards an optimal resource. management for IoT based green and sustainable smart cities, J. Clean. Prod. 220 (2019), 1167-1179, https://doi.org/10.1016/j.jclepro.2019.01.188.
- S. R. Madeti and S. N. Singh, Monitoring system for photovoltaic plant: A review, Renew. Sust. Energ. Rev. 67 (2017), 1180-1207, https://doi.org/10.1016/j.rser.2016.09.088.
- A. Hysa, Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters, Emerg. Sci. J. 3 (2019), no. 6, 395-406, https://doi.org/10.28991/esj-2019-01202.
- F. Shariff, N. Abd Rahim, and H. W. Ping, Zigbee-based data acquisition system for online monitoring of grid-connected photovoltaic system, Expert Syst. Appl. 42 (2015), 1730-1742, https://doi.org/10.1016/j.eswa.2014.10.007.
- J. Han, I. Lee, and S. H. Kim, User-friendly monitoring system for residential PV system based on low- cost power line communication, IEEE Trans. Consum. Electron. 61 (2015), no. 2, 175-180, https://doi.org/10.1109/TCE.2015.7150571.
- J. D. Jeong et al., Implementation of cost-effective wireless photovoltaic monitoring module at panel level, ETRI J. 40 (2018), no. 5, 664-676, https://doi.org/10.4218/etrij.2017-0307.
- B. Ahmed and N. F. F. Alhialy, Optimum efficiency of PV panel using genetic algorithms to touch proximate zero energy house (NZEH), Civ. Eng. J. 5 (2019), no. 8, 1832-1840, https://doi.org/10.28991/cej-2019-03091375.
- R. Boukenoui et al., Experimental assessment of maximum power point tracking methods for photovoltaic systems, Energy 132 (2017), 324-340, https://doi.org/10.1016/j.energy.2017.05.087.
- A. Mellit and S. A. Kalogirou, MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of status and future perspectives, Energy 70 (2014), 1-21, https://doi.org/10.1016/j.energy.2014.03.102.
- A. Mellit, G. M. Tina, and S. A. Kalogirou, Fault detection and diagnosis methods for photovoltaic systems: A review, Renew. Sust. Energ. Rev. 91 (2018), 1-17, https://doi.org/10.1016/j.rser.2018.03.062.
- M. Bardwell et al., IoT-based MPPT controller for photovoltaic array, in Proc. IEEE Electr. Power Energy (EPEC), (Toronto, Canada), Oct. 2018, pp. 1-6, https://doi.org/10.1109/EPEC.2018.8598404.
- S. Mondal and R. Paily, On-chip photovoltaic power harvesting system with low-overhead adaptive MPPT For IoT nodes, IEEE Internet Things J. 4 (2017), no 5, 1624-1633, https://doi.org/10.1109/JIOT.2017.2692383.
- H. Manghani, N. P. Ram, and N. Rajasekar, An internet of things to maximum power point tracking approach of solar PV array, in Advances in smart grid and renewable energy, vol. 435, Springer, Singapore, 2018, pp. 401-409, https://doi.org/10.1007/978-981-10-4286-739.
- H. Rasool et al., MPPT based ASBC controller and solar panel monitoring system, in Proc. Int. Conf. Energy Syst. Policies (Islamabad, Pakistan), Nov. 2015, pp. 1-7, https://doi.org/10.1109/ICESP.2014.7347002.
- L. V. Ascension, F. Manuel, and V. Marta, IoT application for real-time monitoring of solar home systems based on ArduinoTM with 3G connectivity, IEEE Sensors J. 19 (2019), no. 2, 679-691, https://doi.org/10.1109/JSEN.2018.2876635.
- R. I. S. Pereira et al., IoT embedded linux system based on raspberry pi applied to real-time cloud monitoring of a decentralized photovoltaic plant, Measurement 114 (2018), 286-297, https://doi.org/10.1016/j.measurement.2017.09.033.
- M. P. P. Jose et al., An alternative internet-of-things solution based on LoRa for PV power plants: Data monitoring and management, Energies 12 (2019), no. 5881, https://doi.org/10.3390/en12050881.
- S. Sarswat, I. Yada, and S. Maurya, Real time monitoring of solar PV parameter using IoT, Int. J. Innov. Technol. Explor. Eng. 9 (2019), no. 1, 267-271, https://doi.org/10.35940/ijitee.A1054.1191S19.
- M. D. Ivonne et al., Novel methodology for detecting non-ideal operating conditions for grid connected photovoltaic plants using internet of things architecture, Energy Convers. Manag. 200 (2019), 112078, https://doi.org/10.1016/j.enconman.2019.112078.
- S. Belhimer, M. Haddadi, and A. Mellit, A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications, Int. J. Hydrog. Energy 43 (2018), no. 14, 6887-6898, https://doi.org/10.1016/j.ijhydene.2018.02.136.
- K. Ishaque, Z. Salam, and G. Lauss, The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions, Appl. Energy 119 (2014), 228-236, https://doi.org/10.1016/j.apenergy.2013.12.054.
- B. Liu et al., Analysis and improvement of maximum power point tracking algorithm based on incremental conductance method for photovoltaic array, in Proc. Int. Conf. Power Electron. Drive Syst. (Bangkok, Thailand), Nov. 2007, pp. 1-5, https://doi.org/10.1109/PEDS.2007.4487768.
- D. Verma, Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems, Renew. Sust. Energ. Rev. 54 (2016), 1018-1034, https://doi.org/10.1016/j.rser.2015.10.068.
- A. Messai et al., Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation, Sol. Energy 85 (2011), no. 2, 265-277, https://doi.org/10.1016/j.solener.2010.12.004.
- S. Necaibia et al., Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter, Sol. Energy 180 (2019), 152-168, https://doi.org/10.1016/j.solener.2019.01.028.
- A. Mellit et al., FPGA-based real time implementation of MPPT-controller for photovoltaic systems, Renew. Energ. 36 (2011), no. 5, 1652-1661, https://doi.org/10.1016/j.renene.2010.11.019.
- N. Rouibah et al., A low-cost monitoring system for maximum power point of a photovoltaic system using IoT technique, in Proc. Int. Conf. Wirel. Technol., Embed. Intell. Syst. (Fez, Morocco), Apr. 2019, pp. 1-5, https://doi.org/10.1109/WITS.2019.8723724.
- Q. D. Ho, Y. Gao, and T. Le-Ngoc, Challenges and research opportunities in wireless communication networks for smart grid, IEEE Wirel. Commun. 20 (2013), no. 3, 89-95, https://doi.org/10.1109/MWC.2013.6549287.
- W. Wang, Y. Xu, and M. Khanna, A survey on the communication architectures in smart grid, Comput. Netw. 55 (2011), no. 15, 3604-3029, https://doi.org/10.1016/j.comnet.2011.07.010.
- M. Valentini et al., PV inverter test setup for European efficiency, static and dynamic MPPT efficiency evaluation, in Proc. Int. Conf. Optim. Electr. Electron. Equip. (Brasov, Romania), May 2008, pp. 1-6, https://doi.org/10.1109/OPTIM.2008.4602445.
Cited by
- Design of a Novel Remote Monitoring System for Smart Greenhouses Using the Internet of Things and Deep Convolutional Neural Networks vol.14, pp.16, 2021, https://doi.org/10.3390/en14165045