• Title/Summary/Keyword: IoT

Search Result 4,406, Processing Time 0.037 seconds

Survivability Analysis of MANET Routing Protocols under DOS Attacks

  • Abbas, Sohail;Haqdad, Muhammad;Khan, Muhammad Zahid;Rehman, Haseeb Ur;Khan, Ajab;Khan, Atta ur Rehman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3639-3662
    • /
    • 2020
  • The network capability to accomplish its functions in a timely fashion under failures and attacks is known as survivability. Ad hoc routing protocols have been studied and extended to various domains, such as Intelligent Transport Systems (ITSs), Unmanned Aerial Vehicles (UAVs), underwater acoustic networks, and Internet of Things (IoT) focusing on different aspects, such as security, QoS, energy. The existing solutions proposed in this domain incur substantial overhead and eventually become burden on the network, especially when there are fewer attacks or no attack at all. There is a need that the effectiveness of these routing protocols be analyzed in the presence of Denial of Service (DoS) attacks without any intrusion detection or prevention system. This will enable us to establish and identify the inherently stable routing protocols that are capable to survive longer in the presence of these attacks. This work presents a DoS attack case study to perform theoretical analysis of survivability on node and network level in the presence of DoS attacks. We evaluate the performance of reactive and proactive routing protocols and analyse their survivability. For experimentation, we use NS-2 simulator without detection or prevention capabilities. Results show that proactive protocols perform better in terms of throughput, overhead and packet drop.

Environmental Suitability for Conservation and the Risk Period for Fungal Damage of Wooden Cultural Heritages in Korea

  • Ik-Gyun IM;Gyu-Seong HAN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.295-308
    • /
    • 2023
  • This study applied a real-time IoT (Internet of Things) environmental monitoring system to wooden cultural heritages (WCHs) located in suburbs and forests in Korea. It automated the graphs of seasonal Temperature (T) and relative humidity (RH) changes inside the heritage structures and seasonal Performance Index (PI) values. While utilizing line graphs of the existing T and RH change trends and a bar graph expressing the PI values, this study examined the current status of the conservation environment inside the WCHs throughout the year and its diagnosis. Consequently, at higher latitudes, the organic cultural heritage repeatedly experienced large T fluctuations, and the risk of physical and chemical degradation of the materials was greater. However, the RH showed significant seasonal differences, even within the same latitude, indicating that the impact of latitude was not significant. Therefore, the staff in charge must manage RH by considering the surrounding environmental conditions and adjusting the internal environment of the structures. The PI values for the year-round T and RH inside the heritages were confirmed to only be a maximum of approximately 60% of the environmental suitability for conservation throughout the year, depending on the season. The relationship between the germination and growth potential period of xerophilic fungi and the monthly internal temperature and humidity in five heritages located at different latitudes was analyzed. As a result, we could thus determine that four particular months of the year (June-September) represent the periods with the highest risk of damage from xerophilic fungi in the country, regardless of latitude.

Entity Authentication Scheme for Secure WEB of Things Applications (안전한 WEB of Things 응용을 위한 개체 인증 기술)

  • Park, Jiye;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.394-400
    • /
    • 2013
  • WoT (Web of Things) was proposed to realize intelligent thing to thing communications using WEB standard technology. It is difficult to adapt security protocols suited for existing Internet communications into WoT directly because WoT includes LLN(Low-power, Lossy Network) and resource constrained sensor devices. Recently, IETF standard group propose to use DTLS protocol for supporting security services in WoT environments. However, DTLS protocol is not an efficient solution for supporting end to end security in WoT since it introduces complex handshaking procedures and high communication overheads. We, therefore, divide WoT environment into two areas- one is DTLS enabled area and the other is an area using lightweight security scheme in order to improve them. Then we propose a mutual authentication scheme and a session key distribution scheme for the second area. The proposed system utilizes a smart device as a mobile gateway and WoT proxy. In the proposed authentication scheme, we modify the ISO 9798 standard to reduce both communication overhead and computing time of cryptographic primitives. In addition, our scheme is able to defend against replay attacks, spoofing attacks, select plaintext/ciphertext attacks, and DoS attacks, etc.

Developments of Local Festival Mobile Application and Data Analysis System Applying Beacon (비콘을 활용한 위치기반 지역축제 모바일 애플리케이션과 데이터 분석 시스템 개발)

  • Kim, Song I;Kim, Won Pyo;Jeong, Chul
    • Korea Science and Art Forum
    • /
    • v.31
    • /
    • pp.21-32
    • /
    • 2017
  • Local festivals form the regional cultures and atmosphere of communication; they increase the demand of domestic tourism businesses and thus, have an important role in ripple effects (e.g. regional image improvement, tourist influx, job creation, regional contents development, and local product sales) and economic revitalization. IoT (Internet of Thing) technologies have been developed especially, beacon-one of the IoT services has been applied as plenty of types and forms both domestically and internationally. However, notwithstanding expansion of current digital mobile technologies, it still remains as difficult for the individual to track the information about all the local festivals and to fulfill the tourists' needs of enjoying festivals given the weak strategic approaches and advertisement activities. Furthermore, current festival-related mobile applications don't function well as delivering information and have numerous contents issues (e.g. ways of information delivery within the festival places, independent application usage for each festival, one time usage due to one time event). This research, based on the background mentioned above, aims to develop the local festival mobile application and data analysis system applying beacon technology. First of all, three algorithms were developed, namely, 'festival crowding algorithm', 'visitor stats algorithm', and 'customized information algorithm', and then beta test was followed with the developed application and data analysis system. As a result, they could form the database of visitors' types and behaviors, and provide functions and services, such as personalized information, waiting time for festival contents, and 'hot place' function. Besides, in Google Play store, they also got the titles given with more than 13,000 downloads within first three months and as the most exposed application related with festivals; and, thus, got credited with their marketability and excellence. This research follows this order: chapter 2 shows the literature review of local festival related with technology development, beacon service, and festival application. In Chapter 3, design plans and conditions are described of developing local festival mobile application and data analysis system with beacon. Chapter 4 evaluates the results of the beta performance test to verify applicability of the developed application and data analysis system, and lastly, chapter 5 explains the conclusion and suggests the future research.

A Software Defined Networking Approach to Improve the Energy Efficiency of Mobile Wireless Sensor Networks

  • Aparicio, Joaquin;Echevarria, Juan Jose;Legarda, Jon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2848-2869
    • /
    • 2017
  • Mobile Wireless Sensor Networks (MWSN) are usually constrained in energy supply, which makes energy efficiency a key factor to extend the network lifetime. The management of the network topology has been widely used as a mechanism to enhance the lifetime of wireless sensor networks (WSN), and this work presents an alternative to this. Software Defined Networking (SDN) is a well-known technology in data center applications that separates the data and control planes during the network management. This paper proposes a solution based on SDN that optimizes the energy use in MWSN. The network intelligence is placed in a controller that can be accessed through different controller gateways within a MWSN. This network intelligence runs a Topology Control (TC) mechanism to build a backbone of coordinator nodes. Therefore, nodes only need to perform forwarding tasks, they reduce message retransmissions and CPU usage. This results in an improvement of the network lifetime. The performance of the proposed solution is evaluated and compared with a distributed approach using the OMNeT++ simulation framework. Results show that the network lifetime increases when 2 or more controller gateways are used.

Development of the Smallest, High-accuracy NDIR Methane Sensor Module to Detect Low Concentration (저 농도 감지를 위한 NDIR 방식의 초소형 고정도 메탄센서 모듈)

  • Kim, Dong-Hwan;Lee, Ihn;Bang, Il-Soon;Chun, Dong-Gi;Kim, Il-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.199-203
    • /
    • 2018
  • In this study, we develop a methane sensor module that can detect low concentrations below 5,000 ppm and measure up to the detection limit of 50 ppm with the NDIR method, with a long lifetime and high accuracy. Methane ($CH_4$) is one of a representative greenhouse gas, which is very explosive. Thus, it is important to quickly and accurately measure methane concentration in the air. To adjust the methane sensor for industrial field applications, a NDIR-based small sensor was implemented and characterized, where its volume was $4cm{\times}4cm{\times}2cm$ and its response time ($T_{90}$) was less than 30 sec. These results demonstrate that the proposed sensor is commercially available for low-concentration measurement, low volume, and fast response application, such as IoT sensor nodes and portable devices.

Smart Glasses Technologies for Trustworthy, Augmented Reality, See-Through Eyes-Direct Communications as Substitute for Smart Phones (스마트폰 대체재로서의 신뢰증강보는통신용 스마트안경 기술)

  • Song, K.B.;Lee, J.K.;Kim, K.Y.;Kim, G.W.;Park, S.H.;Kim, T.Y.;Yoon, H.S.;Lee, J.H.;Kim, D.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.58-70
    • /
    • 2019
  • In this paper, we present the R&D status of ETRI's Trusted Reality (TR) project and its core technologies. ETRI's TR project focuses on the next-generation paradigm of smart phones, ETRI-TR Smart Glasses, which aims to provide the same features as those of smart phones without the involvement of any handheld device. Furthermore, they are characterized by additional features enabled by trustworthy VR/AR/MR/XR, such as privacy masking/unmasking, distributed structure of thin-client computing/networking among TR-Glasses, TR-LocalEdge, and TR-RemoteEdge, with novel see-through eyes-direct communication between IoT real/virtual objects and human eyes. Based on these core technologies of the ETRI's TR project, the human-held ETRI-TR Smart Glasses is expected to aid in the realization of XR vision with particularly more XR's safe_privacy on social life in the near future.

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

An insight into the prediction of mechanical properties of concrete using machine learning techniques

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;M.Ramkumar Raja;Hany S. Hussein;T.M. Yunus Khan;Pooja Sabherwal
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.263-286
    • /
    • 2023
  • Experimenting with concrete to determine its compressive and tensile strengths is a laborious and time-consuming operation that requires a lot of attention to detail. Researchers from all around the world have spent the better part of the last several decades attempting to use machine learning algorithms to make accurate predictions about the technical qualities of various kinds of concrete. The research that is currently available on estimating the strength of concrete draws attention to the applicability and precision of the various machine learning techniques. This article provides a summary of the research that has previously been conducted on estimating the strength of concrete by making use of a variety of different machine learning methods. In this work, a classification of the existing body of research literature is presented, with the classification being based on the machine learning technique used by the researchers. The present review work will open the horizon for the researchers working on the machine learning based prediction of the compressive strength of concrete by providing the recommendations and benefits and drawbacks associated with each model as determining the compressive strength of concrete practically is a laborious and time-consuming task.

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.