• Title/Summary/Keyword: Inverter drive

Search Result 752, Processing Time 0.028 seconds

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

Field Weakening Control of IPMSM for High Speed Operation (영구자석 동기전동기의 약계자제어에 의한 고속 운전)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Choon-Sam;Lee, Byung-Song;Kim, Soo-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.588-590
    • /
    • 1994
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. The IPM synchronous motors have a saliency, in which the q-axis inductance is larger than the d-axis inductance. As a consequence, there exists a reluctance torque component Thus when this component is added to the torque component produced by the stator currents and the air-gap flux, IPM motor drives are readily applicable where full torque Is required up to full or base speed. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. The wide variety of speed control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system. Simulation results are given and discussed.

  • PDF

Networked Intelligent Motor-Control Systems Using LonWorks Fieldbus

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.365-370
    • /
    • 2004
  • The integration of intelligent devices, devices-level networks, and software into motor control systems can deliver improved diagnostics, fast warnings for increased system reliability, design flexibility, and simplified wiring. Remote access to motor-control information also affords an opportunity for reduced exposure to hazardous voltage and improved personnel safety during startup and trouble-shooting. This paper presents LonWorks fieldbus networked intelligent induction control system architecture. Experimental bed system with two inverter motor driving system for controlling 1.5kW induction motor is configured for LonWorks networked intelligent motor control. In recent years, MCCs have evolved to include component technologies, such as variable-speed drives, solid-state starters, and electronic overload relays. Integration was accomplished through hardwiring to a programmable logic controller (PLC) or distributed control system (DCS). Devicelevel communication networks brought new possibilities for advanced monitoring, control and diagnostics. This LonWorks network offered the opportunity for greatly simplified wiring, eliminating the bundles of control interwiring and corresponding complex interwiring diagrams. An intelligent MCC connected in device level control network proves users with significant new information for preventing or minimizing downtime. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events, and electronic documentation. In order to show the application of the multi-motors control system, the prototype control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using LonWorks network.

  • PDF

Design and Control of a DC-DC Converter for Electric Vehicle Applications (전기자동차 응용을 위한 DC-DC 컨버터의 설계 및 제어)

  • 노정욱;이성세;문건우;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.587-595
    • /
    • 2002
  • Recently, the electric vehicles which are powered by such sources as battery, solar cell, fuel-cell, and so forth attract increasing attention. However, the unit cell voltages of these power sources are so low that a number of cells should be stacked in series to drive the vehicle inverter systems, which increases the complexity of the structure of power source. In this paper, a high-efficiency high-power boost converter for electric vehicle applications, which is able to convert a relatively low source voltage into a sufficiently high regulated DC link voltage, is proposed, and the design guidelines and the experimental results are presented.

Induction Motor Vector Control for Drum Washing Machine (드럼 세탁기용 유도전동기의 효율운전에 관한 연구)

  • Jeong, Jeong-Gil;Lee, Won-Chul;Bae, Woo-Ri;Won, Chung-Yuen;Jang, Bong-An;Yang, Ha-Yeong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-478
    • /
    • 2005
  • In home appliances, electric energy is optimally controlled by using power electronics technology, creating a comfortable environment in terms of energy saving, low sound generation, and reduced time consumption. Usually simplicity and robustness make the three phase induction motor attractive for use in domestic appliance, including washing machines. Two main fpes of domestic washing machine have evolved. We focus on the front loading machine favored in Europe, which has a horizontal drum axis. With the advent of electronic control, universal motor, with a phase controller operating directly from the ac source, has become popular in washing machine. The efficiency improvement in home appliances is very important for customers. Induction motor efficiency can be improved by means of loss reduction, which can be realized by motor selection and design, improvement of the waveforms supplied by power inverter, utilizing a suitable control method. So this paper describes the architecture and feature of washing machine fed induction motor drive under minimizing losses vector control.

  • PDF

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

Fault Diagnosis Scheme for Open-Phase Fault of Permanent Magnet Synchronous Motor Drive using Extended Kalman Filter (영구자석 동기전동기 드라이브의 확장형 칼만필터를 이용한 개방성 고장진단 기법)

  • Ahn, Sung-Guk;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2011
  • In this paper, the fault diagnosis scheme for PMSM drives has been proposed to maintain control performance under a switch open-phase fault of inverter. When the open-phase fault occurs, the stator resistances of PMSM are estimated by Extended Kalman Filter (EKF) in real time and can appear differently according to the location of fault occurrence to check the fault detection and identification. The control algorithm is configured without the additional device and low cost by adding the existing control program. Also, by using motor parameter the estimated stator resistance value improves the control performance of the controller affected by parameter variation. The feasibility of the proposed fault diagnosis algorithm is validated in simulation and experiment.

A Fuzzy Logical Optimal Efficiency Control of Permanent Magnet Synchronous Motor (PMSM의 퍼지 로직 최적 효율 제어)

  • Zhou, Guang-Xu;Lee, Dong-Hee;Ahm, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.97-99
    • /
    • 2007
  • This paper presents a fuzzy logical control method to implement an on-line optimum efficiency control for Permanent Magnet Synchronous Motor. This method real-timely adjusts the output voltage of the inverter system to achieve the optimum running efficiency of the whole system. At first, the input power is calculated during the steady state in the process of efficiency optimizing. To exactly estimate the steady state of the system, this section needs check up the speed setting on timely. The second section is to calculate input power of dc-bus. The exact measurement of the voltage and current is the vital point to acquire the input power. The third section is the fuzzy logic control unit, which is the key of the whole drive system. Based on the change of input power of dc-bus and output voltage, the variable of output voltage is gained by the fuzzy logical unit. With the on-line optimizing. the whole system call fulfill the minimum input power of dc-bus on the running state. The experimental result proves that the system applied the adjustable V/f control method and the efficiency-optimizing unit possesses optimum efficiency, and it is a better choice for simple variable speed applications such as fans and pump.

  • PDF

A Study on the High-Performance Vector control of Induction Motor for Industrial Application (산업설비 적용을 위한 유도전동기의 고성능 벡터제어에 관한 연구)

  • 손진근;김진상;김병진;김국진;전희종
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.57-64
    • /
    • 1995
  • This paper deals with the modeling and simulation to control the torque and speed of an induction motor using field-oriented control methods. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are calculated from rotor angular velocity and stator current. As results of modeling and digital simulation with a voltage source inverter, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

Comparative Study of Radiation Exposure using Entrance Skin Dose Calculation Technique in Diagnostic X-Ray Radiography (입사 표면 선량 계산에 따른 진단용 X-선 촬영시 피폭선량 비교 연구)

  • Han, Jae-Bok;Choi, Nam-Gil;Sung, Ho-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.357-363
    • /
    • 2011
  • The aim of this study is to compare radiation dose in diagnostic X-ray radiography and calculated by different mathematical equation. The result of ESDs direct measurement and that calculated by Mori NDD-M shows the biggest difference. On the other hand, equation by Edmonds shows the lowest difference of ESDs. Also, Rectification due to the difference between direct dose measurement and calculation method commutated three-phase, single phase and inverter type, show less difference in the drive way. In conclusion, this study can be helpful for expecting radiation dose-exposure and control exposure parameters for the diagnostic x-ray radiography.