• 제목/요약/키워드: Inverter control

검색결과 2,698건 처리시간 0.028초

유도 가열용 Half-Bridge 인버터 시스템의 신뢰성 향상 및 최적제어에 관한 연구 (A Study on the Reliability and Optimal Control of Half-Bridge Inverter for Induction Beating System)

  • 유상봉
    • 기술사
    • /
    • 제33권1호
    • /
    • pp.94-105
    • /
    • 2000
  • The purpose of this paper is to obtain the improved reliability and optimal control of the half-bridge inverter for induction heating system. Parasitic inductance components within the inverter circuit for induction heating including the loss-less turn-off snubber capacitor considerably affect stable operation and noise level of the system. This paper analyzes the effect of the inductance in detail and presents a new snubber configuration suitable for the half-bridge inverter to effectively reduce it. In the half-bridge inverter for induction heating the capacity of the loss-less snubber capacitor determines the switching losses because the zero voltage turn-on switching is used. However, the increase of the capacitor is limited by the system specifications, so that it is not easy work to reduce the switching loss. To effectively overcome the limitation, this paper introduces an active auxiliary resonant circuit suitable for the half-bridge inverter circuit, which operates actively according to the variation of load condition. It is also one of the most important study issues for the half-bridge inverter driven induction heater that the development of optimal control scheme considering varied load condition should be achieved. The control strategy ensures a very stable operation of overall inverter system and zero voltage turn-on switching irrespective of sensitive load parameter variations, in particular, even under the non-magnetic materials.

  • PDF

불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법 (Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load)

  • 이우종;조종민;차한주
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

High-Reliability Three-Phase Dual-Buck Grid-Connected Inverter without Shoot-Through Problem

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.454-462
    • /
    • 2019
  • When compared to traditional bridge-type inverters, the dual-buck inverter has a higher reliability due to the fact that its bridge legs do not have a shoot-through problem. In this paper, the working principle of the dual-buck inverter is analyzed. A comparison of the working modes under full-cycle and half-cycle control is discussed. With half-cycle control, the inverter can realize a higher efficiency. However, this results in current zero-crossing distortion. The corresponding control strategy of the dual-buck inverter is proposed in order to realize both high efficiency and low current harmonic distortion. In addition, the system stability is analyzed. Dead-time is unnecessary due to the advantages of the topology. Thus, the current harmonic distortion can be further reduced. An inverter with the proposed control strategy has the advantages of high reliability, high efficiency and low current harmonic distortion. Finally, simulation and experimental results are given to verify the theoretical analysis.

IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발 (Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device)

  • 노애숙;김태윤
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.233-240
    • /
    • 2005
  • 본 논문은 현재까지 전적으로 수입에 의존하던 국내 교류 전동차용 추진제어장치(Converter/Inverter)를 대용량 IPM 스위칭 소자를 적용하여 개발된 시스템을 제안한다. 컨버터의 용량을 향상시키기 위해 2대의 PWM 컨버터를 병렬 운전하고 병렬 운전 시 각각의 컨버터 스위칭 각을 다르게 제어하여 고조파 함유를 줄였으며 DC-Link 단의 Beatless 제어를 수행하였다. VVVF 인버터 제어의 경우, 저속의 운전영역에서는 순시 토크 제어가 가능한 백터제어를 적용하고, 고속 운전 영역에서는 슬립 주파수제어를 적용하는 백터 제어와 스칼라 제어의 병용 제어기법을 제시하였다. 제시된 추진제어장치는 4대의 210kW 유도전동기를 이용하여 철도차량용 추진제어장치에 적용되는 관련 규격의 각종 시험을 통해 그 성능을 검증하였다.

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

중앙난방시스템의 유량제어방식에 따른 제어특성 연구 (Control Characteristics with Flow Rate Control Methods in Central Heating System)

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.32-37
    • /
    • 2011
  • In this study, control characteristics and energy performance with flow rate control methods were reviewed with the simulation. The heating system is classified such as fan coil unit and HVAC system currently used in buildings with valve control and pump inverter control. The simulation analysis program is made by TRNSYS ver. 15 with the actual data. As a result of this study, the central heating system with pump inverter control decreases electricity energy and reduces gas consumption. Inverter control method shows better performance in comparison with valve control one for energy saving.

Electrical Automatic Control System Based on the Internet of Things

  • Jiyong, Jin
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.784-793
    • /
    • 2022
  • Grid-connected distributed power generation has been widely used in green energy generation. However, due to the distributed characteristics, distributed power generation is difficult to be dynamically allocated and monitored in the electrical control process. In order to solve this problem, this research combined the Internet of Things (IoT) with the automatic control system of electrical engineering to improve the control strategy of the power grid inverter according to the characteristics of the IoT system. In the research, a connection system of the power grid inverter and the IoT controller were designed, and the application effect was tested by simulation experiments. The results showed that the power grid inverter had strong tracking control ability for current and power control. Meanwhile, the electrical control system of the IoT could independently and dynamically control the three-phase current and power. The given value was reached within 50 ms after the step signal was input, which could protect the power grid from being affected by the current. The overall system could realize effective control, dynamic control and protective control.

Sensorless Control of PMSM by a Four-Switch Inverter with Compensation of Voltage Distortion and Adjustment of Position Estimation Gain

  • Kim, Byeong-Han;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.100-109
    • /
    • 2017
  • This paper proposes performance improvement schemes for sensorless PMSM control drive using a four-switch three-phase inverter (so-called B4 inverter). In the proposed scheme, the back-EMF estimation-based sensorless control algorithm is used to control the brushless PMSM without position sensors. In order to have stable operation, this paper presents a gain adjustment scheme that compensates the reduction of stable sensorless operation range as long as the rotor speed increases. In B4 topology, the center point of dc-link capacitors is connected to 3-phase load, and it is prone to have the load current distortion. Hence, to mitigate this problem, a distortion compensation scheme by modifying voltage commands using measured dc-link potentials is proposed in this paper. The validity of the proposed method is evaluated by simulations and experiments.

A Novel Control Strategy for Input-Parallel-Output-Series Inverter System

  • Song, Chun-Wei;Zhao, Rong-Xiang;Lin, Wang-Qing;Zeng, Zheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.85-90
    • /
    • 2012
  • This paper presents a topology structure and control method for an input-parallel-output-series(IPOS) inverter system which is suitable for high input current, high output voltage, and high power applications. In order to ensure the normal operation of the IPOS inverter system, the control method should achieve input current sharing(ICS) and output voltage sharing(OVS) among constituent modules. Through the analysis in this paper, ICS is automatically achieved as long as OVS is controlled. The IPOS inverter system is controlled by a three-loop control system which is composed of an outer common-output voltage loop, inner current loops and voltage sharing loops. Simulation results show that this control strategy can achieve low total harmonic distortion(THD) in the system output voltage, fast dynamic response, and good output voltage sharing performance.

3상 전압형 인버터의 디지털 PWM 제어에 관한 연구 (A study on digital PWM control of $3{\Phi}$ voltage-type inverter)

  • 설남오;김영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.585-587
    • /
    • 1998
  • It is suggested that the PWM inverter is controlled by Digital Software Programming. VVVF(Variable Voltage Variable Frequency) inverter control being used by PWM control for driving the motor with speed-varying, makes the PWM pattern with calculating the output voltage and frequency, and with controlling the carrier and signal, so actually this method is difficult to correspond with driving the motor by using voltage-varying and frequency-varying. Therefore this research suggested the new algorithm controlled by micro processor which is already stored by various PWM form of output voltage by using fundamental data of the carrier and signal. The PWM wave can be controlled with real time by using extra hardware and digital software and to speed up program processing, the control signals to switch the power semi-conductor of three phase PWM inverter, simultaneously use the output signal by microprocessor and extra hardware, and control signal by software. In the end, this method was proved by applying to Three Phase Voltage-type Inverter.

  • PDF