• Title/Summary/Keyword: Inverted L

Search Result 137, Processing Time 0.025 seconds

Design of a Compact LPDA Antenna using Inverted-L Shaped Dipole Elements (Inverted-L 형태의 다이폴 소자를 이용한 소형 LPDA 안테나 설계)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.678-682
    • /
    • 2011
  • In this paper, a compact log periodic dipole array (LPDA) antenna operating from 1 to 6 GHz is studied. Inverted-L shaped dipole elements are used to miniaturize the lateral size of an LPDA antenna and the spacing factor is also decreased to reduce the total length of the LPDA antenna. As the top-loading length of the inverted-L shaped dipole elements is increased, the width of the LPDA antenna is decreased but the bandwidth and the gain of the antenna are decreased. The fabricated compact LPDA antenna is printed on FR4 substrate With a dielectric constant of 4.4 and a thickness of 1.6 mm, and its size is reduced to 32% in width and 49% in length compared to a standard LPDA antenna.

Study on the Improvement of the Positioning Accuracy for Inverted RTK Using FARA (FARA를 이용한 Inverted RTK 측위 정확도 향상에 대한 연구)

  • Choi Byung Kygu;Lim Sam Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2004
  • In order to improve real-time positioning accuracy, a number of methods have been tested and one of those is the inverted RTK(Real-time kinematic) that gives a precise positioning by handling carrier phase measurements. For the inverted RTK positioning, it needs the L1 phase measurement at least for 1~2 minutes and the additional reference stations/communication system and a data processing server are required. The L1 code and carrier phase measurements for real-time application are used simultaneously and then Kalman filter is applied to estimate integer ambiguities. Double differenced integer ambiguities are resolved by utilizing the FARA(Fast Ambiguity Resolution Approach). In this paper, we propose the method to improve the positioning accuracy and performed the field tests for several baselines from DAEJ reference station in KAO(Korea Astronomy Observatory).

n-Gram/2L: A Space and Time Efficient Two-Level n-Gram Inverted Index Structure (n-gram/2L: 공간 및 시간 효율적인 2단계 n-gram 역색인 구조)

  • Kim Min-Soo;Whang Kyu-Young;Lee Jae-Gil;Lee Min-Jae
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.12-31
    • /
    • 2006
  • The n-gram inverted index has two major advantages: language-neutral and error-tolerant. Due to these advantages, it has been widely used in information retrieval or in similar sequence matching for DNA and Protein databases. Nevertheless, the n-gram inverted index also has drawbacks: the size tends to be very large, and the performance of queries tends to be bad. In this paper, we propose the two-level n-gram inverted index (simply, the n-gram/2L index) that significantly reduces the size and improves the query performance while preserving the advantages of the n-gram inverted index. The proposed index eliminates the redundancy of the position information that exists in the n-gram inverted index. The proposed index is constructed in two steps: 1) extracting subsequences of length m from documents and 2) extracting n-grams from those subsequences. We formally prove that this two-step construction is identical to the relational normalization process that removes the redundancy caused by a non-trivial multivalued dependency. The n-gram/2L index has excellent properties: 1) it significantly reduces the size and improves the Performance compared with the n-gram inverted index with these improvements becoming more marked as the database size gets larger; 2) the query processing time increases only very slightly as the query length gets longer. Experimental results using databases of 1 GBytes show that the size of the n-gram/2L index is reduced by up to 1.9${\~}$2.7 times and, at the same time, the query performance is improved by up to 13.1 times compared with those of the n-gram inverted index.

Compact Printed Monopole Antenna With Inverted L-shaped Slot for Dual-band Operations

  • Kwak, Chang-Sub;Lee, Yeong-Min;Lee, Young-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • In this paper, we proposed a compact printed monopole antenna with an inverted L-shaped slot for dual-band operations. Two operating frequency bands are achieved with the use of an inverted L-shaped slot etched on the radiating strip for bandwidth enhancement and a defected ground structure for return loss improvement in the higher frequency band. The measured results showthat the proposed antenna has impedance bandwidths (S11< -10 dB) of 270 MHz (1.81-2.08 GHz) and 340 MHz (2.36-2.70 GHz), covering the required bandwidths for PCS (1850.5-1989.5 MHz), CDMA 2000 (1850-1990 MHz), TD-SCDMA (1880-2025 MHz) and 2.4 GHz WLAN (2400-2484 MHz). The measured return loss of the proposed antenna has a good value of approximately 27.2 dB at 2.4 GHz WLAN. The antenna's peak gains also have a high value of 1.92 dBi at 2 GHz and 2.12 dBi at 2.45 GHz. The proposed antenna shows omnidirectional radiation patterns over the entire frequency range of interest.

Input impedance matching method of inverted L antenna using thin ferrite film (페라이트 박막을 이용한 역 L 형 안테나의 입력임피던스 정합법)

  • Lim Gye Jae;Jung Soo Jin;Choi Jong Kwon
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.43-51
    • /
    • 2004
  • Input impedance of the inverted L antenna which is modified from a monopole antenna varies to very high input impedance value when the ration of vertical height to horizontal length is reduced. So its impedance matching becomes very difficult. In this paper, we analyzed the input impedance variation range depending on the ratio of vertical height to horizontal length in the normal and ferrite thin film added configuration for the input impedance control. For the exact analysis involving the permittivity, permeability and conductivity of ferrite material, FDTD numerical method is used.

  • PDF

Impedance Matching Method of an Inverted L Monopole Antenna (역 L 형 모노폴 안테나의 임피던스 정합방법)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • Input impedance of the inverted L antenna which is modified from a monopole antenna varies to very high input impedance value when the ratio of vertical height to horizontal length is reduced. So its impedance matching becomes very difficult. In this paper, we analyzed the input impedance variation range depending on the ratio of vertical height to horizontal length in the normal and ferrite thin film added configuration for the input impedance control. For the exact analysis involving the permittivity, permeability and conductivity of ferrite material, FDTD numerical method is used.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

A Design of Dual-band Microstrip Antenna Loading Inverted-L-shaped Parasitic Elements Vertically at Radiation Apertures for GPS Applications (방사개구면에 역 L형 기생소자를 세운 GPS용 이중대역 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.38-43
    • /
    • 2015
  • In this paper, we present novel dual-band microstrip antennas using inverted-L-shaped parasitic elements vertically at radiation apertures for GPS L1(1.575 GHz) and L2(1.227 GHz) bands. For making dual band which has large interval, the inverted-L-shaped parasitic element was loaded at the radiation aperture of a half-wavelength patch antenna(GPS L1) in opposite direction of the feeding point for receiving the low frequency(GPS L2). The low frequency occurs by perturbation and coupling between the patch and parasitic. Next, due to use circular polarizations at the GPS applications, two inverted-L-shaped parasitic elements were loaded at radiation apertures of each polarizations and the feeding point was moved at diagonal part of the patch. The dimensions of the designed circularly polarized antenna were $88.5{\times}79{\times}10.4mm^3$ ($0.36{\lambda}L{\times}0.32{\lambda}L{\times}0.04{\lambda}L$, ${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths were 116.3 MHz(7.4%) and 64.3 MHz(5.2%) at GPS L1 and L2 bands, respectively. All of these cover the respective required system bandwidths. The measured 3 dB axial ratio bandwidths were 11.7 MHz(0.74%) and 14 MHz(1.14%), respectively. Within each of the designed bands, broadside radiation patterns were observed.

Stabilization Control for Limit Cycle of an Inverted Pendulum System

  • Tajima, Takeshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.507-507
    • /
    • 2000
  • In this paper, a kind of limit cycle of an inverted pendulum system is discussed. We propose a stabilization control law for such a limit cycle of an inverted pendulum system that the pendulum rotates periodically. Besides, the stabilization control law is extended so as to ensure not only stability of the limit cycle but also an L$_2$-gain disturbance attenuation in the presence of modeling error and viscosity friction.

  • PDF

Input Impedance Matching Method of Inverted L Antenna using thin Ferrite Film (페라이트 薄膜을 이용한 逆L形 안테나의 入力임피던스 整合法)

  • Lim, Gye-Jae;Jung, Soo-Jin;Choi, Jong-Kwon
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.26-30
    • /
    • 2004
  • Input impedance of the inverted L antenna which is modified from a monopole antenna varies to very high input impedance value when the ratio of vertical height to horizontal length is reduced. So its impedance matching becomes very difficult. In this paper, we analyzed the input impedance variation range depending on the ratio of vertical height to horizontal length in the normal and ferrite thin film added configuration for the input impedance control. For the exact analysis involving the permittivity, permeability and conductivity of ferrite material, FDTD numerical method is used.